精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$.
(Ⅰ)求f(x)在点(0,f(0))处的切线方程;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.

分析 (Ⅰ)利用导数的运算法则求出f′(x),求出切线斜率,即可求f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(-∞,0),x2∈(0,1).利用导数先证明:?x∈(0,1),f(x)<f(-x).而x2∈(0,1),可得f(x2)<f(-x2).即f(x1)<f(-x2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,因此得证.

解答 (Ⅰ)解:∵$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$,
∴f′(x)=$\frac{-x[(x-1)^{2}+2]}{(1+{x}^{2})^{2}}{e}^{x}$,
∴f′(0)=0,f(0)=1
∴f(x)在点(0,f(0))处的切线方程为y=1;
(Ⅱ)证明:当x<1时,由于$\frac{1-x}{1+{x}^{2}}$>0,ex>0,得到f(x)>0;
同理,当x>1时,f(x)<0.
当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2
当x<0时,f′(x)>0;当x>0时,f′(x)<0.
∴函数f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).
可知:x1∈(-∞,0),x2∈(0,1).
下面证明:?x∈(0,1),f(x)<f(-x),即证$\frac{1-x}{1+{x}^{2}}$<$\frac{1+x}{1+{x}^{2}}{e}^{-x}$.
此不等式等价于(1-x)ex-$\frac{1+x}{{e}^{x}}$<0.
令g(x)=(1-x)ex-$\frac{1+x}{{e}^{x}}$,则g′(x)=-xe-x(e2x-1).
当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.
即(1-x)ex-$\frac{1+x}{{e}^{x}}$<0.
∴?x∈(0,1),f(x)<f(-x).
而x2∈(0,1),∴f(x2)<f(-x2).
从而,f(x1)<f(-x2).
由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,
∴x1<-x2,即x1+x2<0.

点评 本题综合考查了利用导数研究切线方程、函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.直线x-y+2=0与圆x2+y2=3交于A,B两点,则弦AB的长等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列不等式一定成立的是(  )
A.lg(x2+$\frac{1}{4}$)>lgx(x>0)B.sin x+$\frac{1}{sinx}$≥2(x≠$\frac{kπ}{2}$,k∈Z)
C.x2+1≥2|x|(x∈R)D.$\frac{1}{{x}^{2}+1}$>1(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正项等比数列{an}的前n项和为Sn,已知S4-S1=7a2,a3=5,则Sn=(  )
A.$\frac{5}{2}({2}^{n}-1)$B.$\frac{5}{18}({3}^{n}-1)$C.$5•{2}^{n-1}-\frac{5}{4}$D.$5•{2}^{n-2}-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}=(1,x),\overrightarrow{b}=(x,3)$,若$\overrightarrow{a}∕∕\overrightarrow{b}$,则$\left|\overrightarrow{a}\right|$等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x2+bx+c的图象的顶点在第四象限,则函数f′(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在空间四边形ABCD中,AB⊥CD,BC⊥AD,AC与BD的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的正视图,侧视图为边长为2的正方形,其全面积为(  )
A.B.$8\sqrt{2}$πC.$4+4\sqrt{2}$πD.$8+4\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\frac{{cos10°(\sqrt{3}tan20°-1)}}{tan20°}$=-1.

查看答案和解析>>

同步练习册答案