精英家教网 > 高中数学 > 题目详情

抛物线上的两点到焦点的距离之和是,则线段的中点到轴的距离是     

2

解析试题分析:根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到y轴的距离解:∵F是抛物线y2=2x的焦点F( ,0)准线方程x=-设A(x1,y1) B(x2,y2),∴|AF|+|BF|=x1++x2+=5,解得x1+x2=4,∴线段AB的中点横坐标为:2.故线段的中点到轴的距离是2.答案为:2
考点:抛物线的基本性质
点评:本题考查抛物线的基本性质,利用抛物线的定义将到焦点的距离转化为到准线的距离是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

如图,设椭圆的左右焦点分别为,过焦点的直线交椭圆于两点,若的内切圆的面积为,设两点的坐标分别为,则值为        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆的两焦点是椭圆上一点且的等差中项,则此椭圆的标准方程为               

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是                

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

F1F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则的最大值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆C的圆心是直线与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆的离心率,其中一个顶点坐标为,则椭圆的方程为                      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

与双曲线有共同的渐近线,且经过点的双曲线方程是              

查看答案和解析>>

同步练习册答案