精英家教网 > 高中数学 > 题目详情
9.(普通班做)直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是参数)被圆x2+y2=9截得的弦长等于(  )
A.$\frac{12}{5}$B.$\frac{{9\sqrt{10}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{12\sqrt{5}}}{5}$

分析 直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是参数),消去参数化为普通方程.利用点到直线的距离公式可得:圆心O(0,0)到直线的距离d,即可得出直线被圆x2+y2=9截得的弦长=2$\sqrt{{r}^{2}-{d}^{2}}$.

解答 解:直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是参数),消去参数化为普通方程:x-2y+3=0.
圆心O(0,0)到直线的距离d=$\frac{3}{\sqrt{5}}$,
∴直线被圆x2+y2=9截得的弦长=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{9-(\frac{3}{\sqrt{5}})^{2}}$=$\frac{12\sqrt{5}}{5}$.
故选:D.

点评 本题考查了参数方程与普通方程的互化、点到直线的距离公式、直线与圆相交弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知α∈(-$\frac{π}{2}$,0),且cos2α=sin(α-$\frac{π}{2}}$),则tan$\frac{α}{2}$等于$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t为参数),C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)曲线C2交曲线C1于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2ax,g(x)=lnx.
(Ⅰ)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围;
(Ⅱ)设h(x)=f(x)+g(x)有两个极值点x1,x2且${x_1}∈(0,\frac{1}{2})$,证明:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=alnx+\frac{1}{2}{x^2}-bx$(a,b∈R,a≠0),x=1为函数f(x)的极值点.
(1)若x=1为函数f(x)的极大值点,求f(x)的单调区间(用a表示);
(2)若函数f(x)恰有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了调查某中学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下统计结果:
表1:男生上网时间与频数分布表
 上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
 人数 525  3025  15
表2:女生上网时间与频数分布表
 上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
 人数10  2040  2010 
(1)若该中学共有女生600人,试估计其中上网时间不少于60分钟的人数;
(2)完成表3的2×2列联表,并回答能否有90%的把握认为“学生周日上午时间与性别有关”;
(3)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为10的样本,再从中任取2人,记被抽取的2人中上午时间少于60分钟的人数记为X,求X的分布列和数学期望.
表3
 上网时间少于60分钟  上网时间不少于60分钟合计 
 男生   
 女生   
 合计   
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(k2≥k0 0.50 0.400.25  0.150.10 0.05  0.0250.010  0.0050.001 
k0  0.4550.708  1.3232.072  2.076 3.845.024  6.6357.879  10.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,在长方体ABCD-A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN.
(1)求直线A1D与AM所成角的余弦值;
(2)求直线AD与平面ANM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为4的菱形,∠BAD=120°,PA=3.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)设AC与BD交于点O,M为OC中点,求PM与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-ax+a,a∈R.
(1)求函数f(x)的单调增区间;
(2)若函数f(x)在区间(1,e]上无零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案