分析 (I)根据线面垂直的判定,证明BD⊥平面PAC,利用面面垂直的判定,证明平面PBD⊥平面PAC.
(II)过M作MN⊥AD于N,连PN,证明∠MPN为PM与平面PAD所成的角,即可得出结论.
解答
(I)证明:因为PA⊥平面ABCD,所以PA⊥BD,
又ABCD为菱形,所以AC⊥BD,
因为PA∩AC=A,所以BD⊥平面PAC,
因为BD?平面PBD,所以平面PBD⊥平面PAC. …(4分)
(II)解:过M作MN⊥AD于N,连PN,
因为PA⊥平面ABCD,所以PA⊥MN,故MN⊥平面PAD,
所以∠MPN为PM与平面PAD所成的角.…(8分)
又MN=AMsin60°=$\frac{{3\sqrt{3}}}{2}$AN=$\frac{3}{2}$
所以PN=$\sqrt{9+\frac{9}{4}}=\frac{{3\sqrt{5}}}{2}$
所以$tan∠MPN=\frac{MN}{PN}=\frac{{\sqrt{15}}}{5}$…(12分)
点评 本题考查线面垂直、面面垂直的判定,考查线面角,解题的关键是掌握线面垂直、面面垂直的判定,作出线面角.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{5}$ | B. | $\frac{{9\sqrt{10}}}{5}$ | C. | $\frac{{9\sqrt{2}}}{5}$ | D. | $\frac{{12\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com