精英家教网 > 高中数学 > 题目详情
9.如图,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1
(Ⅱ)若C1C=$\frac{\sqrt{6}}{2}$AB,求二面角C1-BD-C的大小.

分析 (Ⅰ)推导出BD⊥CC1,BD⊥AC,由此能证明BD⊥平面ACC1A1
(Ⅱ)设AC∩BD=O,连结OC1,则∠C1OC是二面角C1-BD-C的平面角,由此能求出二面角C1-BD-C的大小.

解答 证明:(Ⅰ)∵ABCD-A1B1C1D1是正四棱柱,
∴CC1⊥平面ABCD,
∵BD?平面ABCD,∴BD⊥CC1
∵四边形ABCD是正方形,∴BD⊥AC,
∵AC∩CC1=C,∴BD⊥平面ACC1A1
解:(Ⅱ)设AC∩BD=O,连结OC1
设C1C=$\frac{\sqrt{6}}{2}$AB=$\sqrt{6}$,则DC1=BC1=$\sqrt{{2}^{2}+(\sqrt{6})^{2}}$=$\sqrt{10}$,
∵ABCD是正方形,∴O是BD中点,∴C1O⊥BD,CO⊥BD,
∴∠C1OC是二面角C1-BD-C的平面角,
∵CO=$\frac{1}{2}AC$=$\frac{1}{2}\sqrt{{2}^{2}+{2}^{2}}$=$\sqrt{2}$,C1O=$\sqrt{(\sqrt{10})^{2}-(\sqrt{2})^{2}}$=2$\sqrt{2}$,
∴tan∠C1OC=$\frac{{C}_{1}C}{OC}=\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}$,∴∠C1OC=60°.
∴二面角C1-BD-C的大小为60°.

点评 本题考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为4的菱形,∠BAD=120°,PA=3.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)设AC与BD交于点O,M为OC中点,求PM与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-ax+a,a∈R.
(1)求函数f(x)的单调增区间;
(2)若函数f(x)在区间(1,e]上无零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=a-$\frac{2}{{2}^{x}+1}$为奇函数的必要条件是a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.体积为$\frac{9\sqrt{2}}{8}$的四棱柱ABCD-A1B1C1D1的底面为梯形,DC∥AB,AB=2AD=2DC=2,∠DAB=60°,平面DCC1D1⊥平面ABCD,且二面角A1-AD-C的余弦值为-$\frac{1}{3}$.
(Ⅰ)求AC1与BC夹角的正切值;
(Ⅱ)连接A1C交平面AB1C1于点Q,求A1Q的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分别是PC、PD的中点,PA=$\sqrt{3}$AD.
(1)在线段BC上求作一点G,使得平面EFG∥平面PAB;
(2)在(1)的条件下,求平面EFG与平面PCD所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二面角α-l-β的棱上有两点A,B,P为平面β上一点,PB⊥AB,PA与AB成45°,PA与α成30°角,求这个二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{ex}{{e}^{x}}$,g(x)=ax-lnx(a∈R).
(1)当x∈[0,+∞)时,求函数f(x)的值域;
(2)若对任意x∈[0,+∞),都存在x0∈[$\frac{1}{e}$,e],使得f(x)=g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在直角坐标系xoy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数).
(Ⅰ)求圆C的普通方程;
(Ⅱ)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.

查看答案和解析>>

同步练习册答案