精英家教网 > 高中数学 > 题目详情
1.已知点F是抛物线x2=4y的焦点,定点M(2,3),点P是此抛物线上的动点(点P不在直线MF上),当△PMF的周长最小时,点P到直线MF的距离为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{2}$

分析 要求△PMF周长的最小值,只要求|MP|+|PF|的最小值.设点M在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,即求|MP|+|PD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|PD|最小,求出P的坐标,然后求解即可.

解答 解:要求△PMF周长的最小值,只要求|MP|+|PF|的最小值
设点M在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|
∴要求|MP|+|PF|取得最小值,即求|MP|+|PD|取得最小,
当D,M,P三点共线时|MP|+|PD|最小,为3-(-1)=4,
可得P(2,2),
∴△FPM是等腰直角三角形.
∴点P到直线MF的距离为:$\sqrt{2}$,
故选:D.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|PD|最小,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为(  )
A.6B.$\frac{39}{5}$C.$\frac{41}{5}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知α∈(-$\frac{π}{2}$,0),且cos2α=sin(α-$\frac{π}{2}}$),则tan$\frac{α}{2}$等于$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=1,an+1=c+$\frac{1}{a_n}$,1≤an≤4成立,则c的取值范围是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x与y之间的一组数据:
x014m3
ym35.57
根据数据可求得y关于x的线性回归方程为$\hat y$=2.1x+0.85,则m的值为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|${\frac{x-2}{x+1$≤0},B={-1,0,1,2,3},则A∩B等于(  )
A.{-1,0,1}B.{1,2,3}C.{0,1,2}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t为参数),C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)曲线C2交曲线C1于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2ax,g(x)=lnx.
(Ⅰ)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围;
(Ⅱ)设h(x)=f(x)+g(x)有两个极值点x1,x2且${x_1}∈(0,\frac{1}{2})$,证明:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为4的菱形,∠BAD=120°,PA=3.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)设AC与BD交于点O,M为OC中点,求PM与平面PAD所成角的正切值.

查看答案和解析>>

同步练习册答案