精英家教网 > 高中数学 > 题目详情
13.已知曲线C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t为参数),C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)曲线C2交曲线C1于A,B两点,求|AB|.

分析 (1)曲线C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t为参数),利用平方关系可得曲线C1化为普通方程;C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s为参数),消去参数化为普通方程,进而得到曲线形状.
(2)将直线C2的参数方程$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}(s为参数)}\right.$代入曲线C1直角坐标方程中,可得${s^2}-3\sqrt{2}s+4=0$,利用根与系数的关系、弦长公式即可得出.

解答 解:(1)曲线C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t为参数),
利用平方关系可得:曲线C1化为普通方程是(x+2)2+(y-1)2=1,
曲线C1是圆心为(-2,1),半径为1的圆;
C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s为参数),
消去参数化为普通方程:y=x+4,
曲线C2是斜率为1,在y轴上截距为4的直线.
(2)将直线C2的参数方程$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}(s为参数)}\right.$代入曲线${C_1}:{(x+2)^2}+{(y-1)^2}=1$中,
得${s^2}-3\sqrt{2}s+4=0$,
设A,B对应参数分别为s1,s2
则${s_1}+{s_2}=3\sqrt{2},{s_1}{s_2}=4$,
∴$|{AB}|=|{{s_1}-{s_2}}|=\sqrt{{{({s_1}+{s_2})}^2}-4{s_1}{s_2}}=\sqrt{2}$.

点评 本题考查了参数方程化为普通方程、直线与曲线相交弦长公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设i为虚数单位,若复数z满足(2+i)z=5i,则z的虚部为(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1=-2016,其前n项和为Sn,若$\frac{{{S_{2016}}}}{2016}$-$\frac{{{S_{2013}}}}{2013}$=3,则S2016=(  )
A.-2016B.-2015C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点F是抛物线x2=4y的焦点,定点M(2,3),点P是此抛物线上的动点(点P不在直线MF上),当△PMF的周长最小时,点P到直线MF的距离为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某公司为了了解某设备的使用年限与所支出的维修费用之间的关系,统计了5组数据如表所示:
使用年限x(年)23456
维修费用y(万元)2.23.85.56.57.0
根据上表可求得回归直线方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=1.23,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此估计,该设备使用年限为10年时所支出的维修费用为(  )
A.11.38万元B.12.38万元C.13.38万元D.14.38万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求AC1 与平面BCC1 B1 所成角的正弦值;
(3)求二面角A-A1 B-C1 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在长方体ABCD-A1B1C1D1中,AB=AA1=1,E为BC中点.
(Ⅰ)求证:C1D⊥D1E;
(Ⅱ)在棱AA1上是否存在一点M使得BM∥平面AD1E?若存在,求$\frac{AM}{A{A}_{1}}$的值;若不存在,说明理由;
(Ⅲ)若二面角B1-AE-D1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(普通班做)直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是参数)被圆x2+y2=9截得的弦长等于(  )
A.$\frac{12}{5}$B.$\frac{{9\sqrt{10}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{12\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=|x-1|-|x-3|的最大值、最小值.

查看答案和解析>>

同步练习册答案