精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
cosx
2cosx-1
,若f(x)+a≥0在(-
π
3
π
3
)
上恒成立,则实数a的取值范围是
a≥-1
a≥-1
分析:由函数f(x)=
cosx
2cosx-1
=
1
2-
1
cosx
,知f(x)+a=
1
2-
1
cosx
+a.由x∈(-
π
3
π
3
)
时,1<
1
cosx
<2
,能求出f(x)+a=
1
2-
1
cosx
+a在(-
π
3
π
3
)
上恒成立时实数a的取值范围.
解答:解:∵函数f(x)=
cosx
2cosx-1
=
1
2-
1
cosx

∴f(x)+a=
1
2-
1
cosx
+a,
∵当x∈(-
π
3
π
3
)
时,
1<
1
cosx
<2

∴由f(x)+a=
1
2-
1
cosx
+a在(-
π
3
π
3
)
上恒成立,
知a≥-1.
故答案为:a≥-1.
点评:本题考查函数的恒成立问题,解题时要认真审题,仔细解答,注意三角函数恒等变换的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案