精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A,B,C所对的边分别是a,b,c,cos2C+2$\sqrt{2}$cosC+2=0.
(1)求角C的大小;
(2)若△ABC的面积为$\frac{\sqrt{2}}{2}$sinAsinB,求c的值.

分析 (1)由二倍角公式,代入即可求得cosC=-$\frac{\sqrt{2}}{2}$,由0<C<π,则C=$\frac{3π}{4}$;
(2)由三角形的面积公式,代入根据正弦定理即可求得R,由c=2Rsinc,即可求得c的值.

解答 解:(1)由cos2C=2cos2C-1,
则2cos2C-1+2$\sqrt{2}$cosC+2=0,整理得:2cos2C+2$\sqrt{2}$cosC+1=0,
∴($\sqrt{2}$cosC+1)2=0,cosC=-$\frac{\sqrt{2}}{2}$,
由0<C<π,则C=$\frac{3π}{4}$,
∴角C为$\frac{3π}{4}$;
(2)由△ABC的面积S,S=$\frac{1}{2}$absinC=$\frac{\sqrt{2}}{2}$sinAsinB,则$\frac{1}{2}$ab×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$sinAsinB,
整理得:$\frac{a}{sinA}$×$\frac{b}{sinB}$=2
由正弦定理可知:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,(R为外接圆半径),
则4R2=2,解得:R=$\frac{\sqrt{2}}{2}$,
c=2Rsinc=2×$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{2}}{2}$=1,
∴c的值为1.

点评 本题考查二倍角公式,特殊角的三角形函数值,正弦定理的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,圆C的方程为ρ=4cosθ,以极点为坐标原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l经过点M(5,6),且斜率为$\frac{4}{3}$.
(1)求圆 C的平面直角坐标方程和直线l的参数方程;
(2)若直线l与圆C交于A,B两点,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线3x-4y+1=0与3x-4y+7=0的距离为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.容量为20的样本数据,分组后的频数如表:
分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数234542
则样本数据落在区间[10,40)的频率为0.45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是直线l:3x-y-2=0上任意一点,过点P引圆(x+3)2+(y+1)2=1的切线,则切线长度的最小值为(  )
A.3B.$\sqrt{7}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C的方程为x2+y2-4x+2y=0,则圆心坐标为(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={0,1,2,3},B={2,3,4,5},则A∩B={2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O(0,0),A(-1,3),B(2,-4),$\overrightarrow{OP}$=2$\overrightarrow{OA}$+m$\overrightarrow{AB}$,若点P在y轴上,则m=(  )
A.$\frac{2}{3}$B.$\frac{6}{7}$C.-$\frac{2}{3}$D.-$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二面角α-AB-β的平面角是锐角θ,α内一点C到β的距离为3,点C到棱AB的距离为4,那么cosθ的值等于(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{{3\sqrt{7}}}{7}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

同步练习册答案