精英家教网 > 高中数学 > 题目详情
16.若数列{an}的前n项之积等于n2+3n+2,(n∈N+),则数列{an}的通项公式为an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*

分析 由题意可得:a1a2•…•an=n2+3n+2,(n∈N+),n=1时,a1=6.n≥2时,a1a2•…•an-1=(n-1)2+3(n-1)+2,相除即可得出.

解答 解:由题意可得:a1a2•…•an=n2+3n+2,(n∈N+),
∴a1=6.
n≥2时,a1a2•…•an-1=(n-1)2+3(n-1)+2=n2+n,(n∈N+),
∴an=$\frac{{n}^{2}+3n+2}{{n}^{2}+n}$=$\frac{n+2}{n}$.
∴an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*
故答案为:an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*

点评 本题考查了数列的递推关系、通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设α∈(0,$\frac{π}{2}$),sinα=$\frac{{\sqrt{6}}}{3}$,则tanα=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过A(4,-3),B(2,-1)作直线4x+3y-2=0的垂线l1,l2,则直线l1,l2间的距离为$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,∠A,∠B的对边分别为a,b,且∠A=30°,a=$\sqrt{2}$,b=2,那么满足条件的△ABC(  )
A.有一个解B.有两个解C.不能确定D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)是定义在 R 上的奇函数,且y=f(x+$\frac{π}{2}$)为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数;
②x=π是它的一条对称轴;
③(-π,0)是它图象的一个对称中心;
④x=$\frac{π}{2}$是它的一条对称轴. 
其中描述正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1,F2,点P在椭圆上,若|PF2|=$\sqrt{2}$,则cos∠F1PF2=(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=ax2-(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[-1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.作出数列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…,(-$\frac{1}{2}$)n,…的图象,并分析数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC在空间直角坐标系中的位置及坐标如图所示,则AC边上的中线长为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案