精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=3,an+1=an+2.
(1)求数列{an}的通项公式an
(2)若bn=an×3n,求数列{bn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)利用等差数列的通项公式即可得出.
(2)利用“错位相减法”及等比数列的前n项和公式即可得出.
解答: 解:(1)∵数列{an}中,a1=3,an+1=an+2,即an+1-an=2.
∴数列{an}是等差数列,
∴an=3+(n-1)×2=2n+1.
(2)由(1)可得bn=an×3n=(2n+1)•3n
∴数列{bn}的前n项和Sn=3×3+5×32+…+(2n+1)•3n
3Sn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1
∴-2Sn=9+2×32+2×33+…+2×3n-(2n+1)•3n+1=3+
2×3×(3n-1)
3-1
-(2n+1)•3n+1
=3n+1-(2n+1)•3n+1=-2n•3n+1
∴Sn=n•3n+1
点评:本题考查了“错位相减法”、等差数列与等比数列的通项公式及前n项和公式,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=
4
3
,|PF2|=
14
3

(1)求椭圆C的方程;
(2)若直线l过圆(x+2)2+(y-1)2=5的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点A(0,4),且与直线2x-y-3=0垂直,那么直线l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差为2的等差数列,且a1+1,a3+1,a7+1成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)令bn=
1
an2-1
(n∈N*),求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-a-x(a>0且a≠1).
(1)判断函数f(x)的奇偶性;
(2)若f(1)<0,试判断 函数f(x)的单调性.并求使不等式f(x2+tx)+f(4-x)<0对一切x∈R恒成立的t的取值范围;
(3)若f(1)=
3
2
,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求二项式(x-
1
x
8展开式中含x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=a,a2=b,an+1+an-1=an(n≥2),则a92等于(  )
A、aB、bC、b-aD、a-b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinxcosx+
3
2
cos2x的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知存在实数x、y满足约束条件
x≥2
x-2y+4≥0
2x-y-4≤0
x2+(y-1)2=R2(R>0)
,则R的最小值
 

查看答案和解析>>

同步练习册答案