精英家教网 > 高中数学 > 题目详情
椭圆的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为,求椭圆的方程.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆,直线,F为椭圆的右焦点,M为椭圆上任意一点,记M到直线L的距离为d.

(Ⅰ) 求证:为定值;
(Ⅱ) 设过右焦点F的直线m的倾斜角为,m交椭圆于A、B两点,且,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线过椭圆的右焦点,抛物线:的焦点为椭圆的上顶点,且直线交椭圆两点,点 在直线上的射影依次为点
(1)求椭圆的方程;
(2)若直线ly轴于点,且,当变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接,试探索当变化时,直线是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为,若椭圆上存在点,满足以椭圆短轴为直径的圆与线段相切于线段的中点,则该椭圆的离心率
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点分别为,如果椭圆上存在点,使得·,则椭圆离心率的取值范围是( )
A.(]B. [)C. (]D.[)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则  ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是椭圆上的动点, 作PDy轴, D为垂足, 则PD中点的轨迹方程为  (    )
A         B       C     D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示焦点在轴上的椭圆,则的取值范围是______  _____  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线  在y轴上的截距为m(m≠0),直线交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

同步练习册答案