精英家教网 > 高中数学 > 题目详情

已知函数的图象经过点.
(1)求实数的值;
(2)设,求函数的最小正周期与单调递增区间.

(1);(2)最小正周期为,单调递增区间为.

解析试题分析:(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.
试题解析:(1)由于函数的图象经过点
因此,解得
所以
(2)

因此函数的最小正周期
,解得
故函数的单调递增区间为.
考点:1.二倍角公式;2.三角函数的周期性与单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).
(1)若a∥b,求sinθ和cosθ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2cos2sin x.
(1)求函数f(x)的最小正周期和值域;
(2)若α为第二象限角,且f,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=
m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.
(1)求函数f(x)的解析式.
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图所示,

(1)求ω,φ的值;
(2)设g(x)=2f f-1,当x∈[0,]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(1)求函数的单调增区间;
(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若上至少含有个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x∈R,ω>0,uv=(cos2ωxsin ωx),函数f(x)=u·v的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知sin(3π+θ)=
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin (0≤x≤5),点AB分别是函数yf(x)图象上的最高点和最低点.
(1)求点AB的坐标以及·的值;
(2)设点AB分别在角αβ的终边上,求tan(α-2β)的值.

查看答案和解析>>

同步练习册答案