【题目】已知
,若
,且
的图象相邻的对称轴间的距离不小于
.
(1)求
的取值范围.
(2)若当
取最大值时,
,且在
中,
分别是角
的对边,其面积
,求
周长的最小值.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴为非负半轴为极轴,与坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)若直线
与曲线
有公共点,求倾斜角
的取值范围;
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设
是平面内相交成
角的两条数轴 ,
分别是
轴,
轴正方向同向的单位向量,若向量
,则把有序数对
叫做向量
在坐标系
中的坐标,假设
.
![]()
(1)计算
的大小;
(2)设向量
,若
与
共线,求实数
的值;
(3)是否存在实数
,使得
与向量
垂直,若存在求出
的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知函数f(x)=ex, g(x)=lnx.
(1)设f(x)在x1处的切线为l1, g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有两个实根,求实数a的取值范围;
(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
中,底面
是菱形,侧面
平面
,且
,
,
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)若点
在线段
上,且
,试问:在
上是否存在一点
,使
面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
![]()
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f (x)
75恒成立; ![]()
恒成立.
(1)判断函数
是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数
符合公司奖励方案函数模型要求,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com