精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-bx2+6x+a,x=2是f(x)的一个极值点.
(1)求f(x)的单调递增区间;
(2)若当x∈[1,3]时,f(x)-a2>2恒成立,求a的取值范围.
(1)f'(x)=3x2-2bx+6.---------------------(1分)
∵x=2是f(x)的一个极值点.
∴f'(2)=0,即2是方程3x2-2bx+6=0的一个根,解得b=
9
2
.----------------------(3分)
所以f'(x)=3x2-9x+6
令f'(x)>0,则3x2-9x+6>0,解得x>2或x<1.-----------------------(5分)
∴函数f(x)的单调递增区间为(-∞,1),(2,+∞).-----------------------(6分)
(2)∵当1<x<2时f'(x)<0,当x>2或x<1时,f'(x)>0,
∴f(x)在(1,2)内单调递减,f(x)在(2,3)内单调递增.-------------------(8分)
∴当x=2时,f(x)取得极小值f(2),同时在区间[1,3]上的也是最小值,且 f(2)=a+2.------------------(10分)
若当x∈[1,3]时,要使f(x)-a2>2恒成立,只需f(2)>a2+2,即a+2>a2+2,------------------(12分)
解得 0<a<1.------------------(13分)
即的取值范围是0<a<1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案