精英家教网 > 高中数学 > 题目详情
13.已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线y=kx+b与抛物线C交于A(x1,y1),B(x2,y2),且|y1-y2|=2,过弦AB中点M作平行于x轴的直线交抛物线于点D,求△ABD的面积.

分析 (1)利用抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5,可得p,即可求抛物线C的方程;
(2)把直线的方程与抛物线方程联立可得△>0及根与系数的关系,再利用三角形的面积公式即可得出.

解答 解:(1)∵抛物线C:y2=2px(p>0)上横坐标为4的点
到焦点的距离为5,
∴4+$\frac{p}{2}$=5,
∴p=2,
∴抛物线C的方程为y2=4x;
(2)联立直线y=kx+b与抛物线C得:k2x2+2(kb-2)x+b2=0(k≠0),
x1+x2=$\frac{2(2-kb)}{{k}^{2}}$,x1x2=$\frac{{b}^{2}}{{k}^{2}}$.
|y1-y2|=k|x1-x2|=$\sqrt{\frac{4(4-4kb)}{{k}^{2}}}$=2,
∴4-4kb=k2
∵M($\frac{2-kb}{{k}^{2}}$,$\frac{2}{k}$),D($\frac{1}{{k}^{2}}$,$\frac{2}{k}$),
∴△ABD的面积S=$\frac{1}{2}$|MD||y1-y2|=$\frac{1}{2}×|\frac{1-kb}{{k}^{2}}|×2$=$\frac{1}{4}$.

点评 本题综合考查了抛物线的标准方程及其性质、弦长公式、直线与抛物线相交问题转化为△>0及根与系数的关系、三角形的面积计算公式等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设x0是方程($\frac{1}{3}$)x=$\sqrt{x}$的解,则x0所在的范围是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=asin2x+bcos2x(ab≠0),有下列四个命题:其中正确命题的序号为①③(填上所有正确命题的序号)
 ①若a=1,b=-$\sqrt{3}$,要得到函数y=f(x)的图象,只需将函数y=2sin2x的图象向右平移$\frac{π}{6}$个单位;
②若a=1,b=-1,则函数y=f(x)的一个对称中心为($\frac{π}{4},0}$);
③若y=f(x)的一条对称轴方程为x=$\frac{π}{8}$,则a=b;
④若方程asin2x+bcos2x=m的正实数根从小到大依次构成一个等差数列,则这个等差数列的公差为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)$2\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}$
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求值:a+a-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)的定义域为(0,1),求f(x2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1的左右焦点分别为F1,F2,直线l1经过椭圆的右焦点与椭圆交于A,B两点,且|AB|=3.
( I)求直线l1的方程;
( II)已知过右焦点F2的动直线l2与椭圆C交于P,Q不同两点,是否存在x轴上一定点T,使∠OTP=∠OTQ?(O为坐标原点)若存在,求出点T的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos(-2x+$\frac{π}{4}$)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在锐角△ABC中,角A,B,C对边分别为a,b,c,已知2asinB=$\sqrt{3}$b.
(1)求角A;
(2)若b=1,a=$\sqrt{3}$,求S△ABC

查看答案和解析>>

同步练习册答案