精英家教网 > 高中数学 > 题目详情
10.不等式ax2-2x+1>0对x∈($\frac{1}{2}$,+∞)恒成立,则a的取值范围为(  )
A.(0,+∞)B.(1,+∞)C.(0,1)D.[1,+∞)

分析 分离参数,构造函数,利用导数求出函数的最大值,问题得以解决.

解答 解:∵ax2-2x+1>0对x∈($\frac{1}{2}$,+∞)恒成立,
∴a>$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
设f(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
∴f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{2}{{x}^{3}}$=$\frac{2}{{x}^{3}}$(-x+1),
令f′(x)>0,解得$\frac{1}{2}$<x<1,函数单调递增,
f′(x)<0,解得x>1,函数单调递减,
∴f(x)max=f(1)=$\frac{2}{1}$-1=1,
∴a>1,
故选:B.

点评 本题考查恒成立问题,考查导数知识的综合运用,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若点P(sinα,tanα)在第三象限,则角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:a,b,c∈(-∞,0),求证:a+$\frac{1}{b}$,b+$\frac{1}{c}$,c+$\frac{1}{a}$中至少有一个不大于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求满足下列条件的圆的方程:
(1)过三点A(5,1),B(7,-3),C(2,8)的圆;
(2)过点A(1,-1)、B(-1,1)且圆心在直线x+y-2=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=cos(x-$\frac{π}{3}$)(x∈[$\frac{π}{6}$,$\frac{2}{3}$π])的最大值是1,最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b为正常数,x,y>0,且$\frac{a}{x}$+$\frac{b}{y}$=1,求证:x+y≥($\sqrt{a}$+$\sqrt{b}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=1008xln(e4x+1)-2016x2+1,f(a)=2,则f(-a)的值为(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=Asin(2x+ϕ),(A>0,|ϕ|<$\frac{π}{2}}$),对任意x都有f(x)≤f($\frac{π}{6}}$)=2,则g(x)=Acos(2x+ϕ)在区间[0,$\frac{π}{2}$]上的最大值与最小值的乘积为(  )
A.$-2\sqrt{3}$B.$-\sqrt{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值为$\frac{{\sqrt{5}}}{5}$,求三棱锥C1-A1CD的体积.

查看答案和解析>>

同步练习册答案