| A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | [1,+∞) |
分析 分离参数,构造函数,利用导数求出函数的最大值,问题得以解决.
解答 解:∵ax2-2x+1>0对x∈($\frac{1}{2}$,+∞)恒成立,
∴a>$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
设f(x)=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
∴f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{2}{{x}^{3}}$=$\frac{2}{{x}^{3}}$(-x+1),
令f′(x)>0,解得$\frac{1}{2}$<x<1,函数单调递增,
f′(x)<0,解得x>1,函数单调递减,
∴f(x)max=f(1)=$\frac{2}{1}$-1=1,
∴a>1,
故选:B.
点评 本题考查恒成立问题,考查导数知识的综合运用,考查分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-2\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com