精英家教网 > 高中数学 > 题目详情
20.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值为$\frac{{\sqrt{5}}}{5}$,求三棱锥C1-A1CD的体积.

分析 (I)连接A1C交AC1于E,证明AA1⊥AC,CD⊥AC,推出CD⊥平面A1ACC1,然后证明AC1⊥平面A1 B1CD.
(II)如图建立直角坐标系,求出相关点的坐标,求出平面 AC1D的法向量$\overrightarrow{n_1}=({\sqrt{3},1,\frac{1}{λ}})$,平面C1CD的法向量为$\overrightarrow{n_2}=({0,1,0})$,通过向量的数量积求出λ=1,然后利用等体积法求解体积即可.

解答 (I)证明:连接A1C交AC1于E,因为AA1=AC,又A A1⊥平面ABCD,所以AA1⊥AC,
所以A1ACC1为正方形,所以A1C⊥AC1,…(2分)
在△ACD中,AD=2CD,∠ADC=60°,由余弦定理得 AC2=AD2+CD2-2 AC•DCcos60°,
所以${A}C=\sqrt{3}CD$,所以AD2=AC2+CD2
所以CD⊥AC,又AA1⊥CD.所以CD⊥平面A1ACC1
所以CD⊥AC1,所以AC1⊥平面A1 B1CD.…(6分)
(II)如图建立直角坐标系,则D(2,0,0),${A}({0,2\sqrt{3},0})$,${C_1}({0,0,2\sqrt{3}λ})$,${{A}_1}({0,2\sqrt{3},2\sqrt{3}λ})$∴$\overrightarrow{D{C_1}}=({-2,0,2\sqrt{3}λ})$,$\overrightarrow{D{{A}_1}}=({-2,2\sqrt{3},2\sqrt{3}λ})$
对平面 AC1D,因为$\overrightarrow{{A}D}=({2,-2\sqrt{3},0})$,$\overrightarrow{{A}{C_1}}=({0,-2\sqrt{3},2\sqrt{3}λ})$
所以法向量$\overrightarrow{n_1}=({\sqrt{3},1,\frac{1}{λ}})$,
平面C1CD的法向量为$\overrightarrow{n_2}=({0,1,0})$,…(8分)
由$cosθ=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=\frac{1}{{\sqrt{3+1+{λ^{-2}}}}}=\frac{{\sqrt{5}}}{5}$,得λ=1,…(10分)
所以 A A1=AC,此时,CD=2,${A}{{A}_1}={A}C=2\sqrt{3}$,
所以${V_{{C_1}-{{A}_1}CD}}={V_{D-{{A}_1}C{C_1}}}=\frac{1}{3}×({\frac{1}{2}×2\sqrt{3}×2\sqrt{3}})×2=4$…(12分)

点评 本题考查二面角的平面镜的求法与应用,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.不等式ax2-2x+1>0对x∈($\frac{1}{2}$,+∞)恒成立,则a的取值范围为(  )
A.(0,+∞)B.(1,+∞)C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线y=x+m与曲线y=$\sqrt{4x-{x^2}}$有公共点,则m的取值范围是[-4,2$\sqrt{2}$-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若定义在R的函数f(x)=ln(ax+$\sqrt{{x^2}+1}}$)为奇函数,则实数a的值为(  )
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设双曲线$\frac{y^2}{9}$-$\frac{x^2}{b^2}$=1(b>0)的渐近线方程为3x±2y=0,则其离心率为(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的两焦点为F1,F2,A是该双曲线上一点,满足:2|AF1|-2|AF2|=|F1F2|,直线AF2交双曲线C于另一点 B,且5$\overrightarrow{{A}{F_2}}$=3$\overrightarrow{{A}{B}}$,则直线 AF2的斜率为(  )
A.$±\frac{{\sqrt{11}}}{33}$B.$±\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$±3\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式($\frac{1}{3}$)x-1<3-2x的解集为{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-lnx-1,g(x)=k(f(x)-x)+$\frac{{x}^{2}}{2}$,(k∈R).
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)求函数g(x)的单调区间;
(3)当1<k<3,x∈(1,e)时,求证:g(x)>-$\frac{3}{2}$(1+ln3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(  )
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案