精英家教网 > 高中数学 > 题目详情
8.若定义在R的函数f(x)=ln(ax+$\sqrt{{x^2}+1}}$)为奇函数,则实数a的值为(  )
A.1B.-1C.±1D.0

分析 根据函数奇偶性的定义建立方程关系进行求解即可得到结论.

解答 解:∵定义在R的函数f(x)=ln(ax+$\sqrt{{x^2}+1}}$)为奇函数,
∴f(-x)=-f(x),
即f(-x)+f(x)=0,
则ln(ax+$\sqrt{{x^2}+1}}$)+ln(-ax+$\sqrt{{x^2}+1}}$)=ln(ax+$\sqrt{{x^2}+1}}$)•(-ax+$\sqrt{{x^2}+1}}$)=ln(x2+1-a2x2)=0,
则x2+1-a2x2=1,即x2-a2x2=0,
则1-a2=0,
则a=±1,
故选:C

点评 本题主要考查函数奇偶性的应用,根据奇函数的定义建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求满足下列条件的圆的方程:
(1)过三点A(5,1),B(7,-3),C(2,8)的圆;
(2)过点A(1,-1)、B(-1,1)且圆心在直线x+y-2=0上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=Asin(2x+ϕ),(A>0,|ϕ|<$\frac{π}{2}}$),对任意x都有f(x)≤f($\frac{π}{6}}$)=2,则g(x)=Acos(2x+ϕ)在区间[0,$\frac{π}{2}$]上的最大值与最小值的乘积为(  )
A.$-2\sqrt{3}$B.$-\sqrt{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《九章算术》有这样一个问题:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和为三百九十里,问第六日所走时数为(  )
A.140B.150C.160D.170

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设实数x,y满足不等式组$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ y≥-1\end{array}\right.$,则2x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)设AB的中点为D,且CD=A1D,求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值为$\frac{{\sqrt{5}}}{5}$,求三棱锥C1-A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\left\{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a}^{x-6},x>7}\end{array}\right.$单调递增,则实数a的取值范围是(  )
A.($\frac{9}{4}$,3)B.[$\frac{9}{4}$,3)C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的偶函数f(x)满足?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(x+1)至少有五个零点,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

同步练习册答案