| A. | ($\frac{9}{4}$,3) | B. | [$\frac{9}{4}$,3) | C. | (1,3) | D. | (2,3) |
分析 利用函数的单调性,判断指数函数的对称轴,以及一次函数的单调性列出不等式求解即可
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a}^{x-6},x>7}\end{array}\right.$单调递增,
由指数函数以及一次函数的单调性的性质,可得3-a>0且a>1.
但应当注意两段函数在衔接点x=7处的函数值大小的比较,
即(3-a)×7-3≤a,可以解得a≥$\frac{9}{4}$,
综上,实数a的取值范围是[$\frac{9}{4}$,3).
故选:B.
点评 本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $±\frac{{\sqrt{11}}}{33}$ | B. | $±\sqrt{3}$ | C. | $±\frac{{\sqrt{3}}}{3}$ | D. | $±3\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$ | B. | 6 | C. | $\frac{20}{3}$ | D. | $\frac{22}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com