精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=2cos2x-3acosx-3在x∈R上有零点,则实数a的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)

分析 令t=cosx,则t∈[-1,1].m(t)=4t2-3at-5在[-1,1]上有零点,只需要m(-1)≥0或m(1)≥0,即可求出实数a的取值范围.

解答 解:f(x)=2cos2x-3acosx-3=4cos2x-3acosx-5
令t=cosx,则t∈[-1,1].m(t)=4t2-3at-5在[-1,1]上有零点,
∴m(-1)≥0或m(1)≥0,
解得a≥$\frac{1}{3}$或a$≤-\frac{1}{3}$.
故选D.

点评 本题考查函数的零点,考查学生解不等式的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{lg|x|}{x^3}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,与函数y=x相同的是(  )
A.y=$\sqrt{{x}^{2}}$B.y=lg10xC.y=($\sqrt{x}$)2D.y=10lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知一个算法的程序框图如图所示,当输出的结果为$\frac{1}{2}$时,则输入的x值为(  )
A.$\sqrt{2}$B.-1C.-1或$\sqrt{2}$D.-1或$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)图象的一条对称轴为x=-$\frac{π}{6}$,则φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知点C是圆心为O半径为1的半圆弧上动点(不含端点A和B),AB是直径,直线CD⊥平面ABC,CD=1.
(1)证明:AC⊥BD;
(2)求三棱锥D-ABC体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一条光线从点A(0,2)射入,与x轴相交于点B(2,0),经x轴反射后过点C(m,1),直线l过点C且分别与x轴和y轴的正半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为(
A.x+$\frac{y}{3}$=1B.$\frac{x}{6}$+$\frac{y}{2}$=1C.$\frac{x}{4}$+$\frac{y}{4}$=1D.$\frac{x}{12}$+$\frac{3y}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直四棱柱ABCD-A1B1C1D1中,底面是边长为$\sqrt{2}$的正方形,AA1=3,点F在棱B1B上运动.
(1)若三棱锥B1-A1D1F的体积为$\frac{2}{3}$时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$

查看答案和解析>>

同步练习册答案