精英家教网 > 高中数学 > 题目详情
9.如图,在直四棱柱ABCD-A1B1C1D1中,底面是边长为$\sqrt{2}$的正方形,AA1=3,点F在棱B1B上运动.
(1)若三棱锥B1-A1D1F的体积为$\frac{2}{3}$时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

分析 (1)求出BF=1,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD与D1F所成的角.
(2)求出$\overrightarrow{AC}$=(-$\sqrt{2},\sqrt{2}$,0),$\overrightarrow{{D}_{1}F}$=($\sqrt{2},\sqrt{2},-2$),利用向量法能求出异面直线AC与D1F所成的角的大小.

解答 解:(1)∵在直四棱柱ABCD-A1B1C1D1中,底面是边长为$\sqrt{2}$的正方形,
∴${S}_{△{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,
∵AA1=3,点F在棱B1B上运动,三棱锥B1-A1D1F的体积为$\frac{2}{3}$,
∴$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}{D}_{1}}$×B1F=$\frac{{B}_{1}F}{3}$=$\frac{2}{3}$,
∴BF=3-2=1,
以D为原点,DA为x轴,DC为y轴,
DD1为z轴,建立空间直角坐标系,
由A($\sqrt{2},0,0$),D(0,0,0),
D1(0,0,3),F($\sqrt{2},\sqrt{2},1$),
$\overrightarrow{AD}$=(-$\sqrt{2},0,0$),
$\overrightarrow{{D}_{1}F}$=($\sqrt{2},\sqrt{2},-2$),
设异面直线AD与D1F所成的角为θ,
则cosθ=$\frac{|\overrightarrow{AD}•\overrightarrow{{D}_{1}F}|}{|\overrightarrow{AD}|•|\overrightarrow{{D}_{1}F}|}$=$\frac{2}{4}$=$\frac{1}{2}$,∴θ=60°.
∴异面直线AD与D1F所成的角为60°.
(2)C(0,$\sqrt{2}$,0),$\overrightarrow{AC}$=(-$\sqrt{2},\sqrt{2}$,0),$\overrightarrow{{D}_{1}F}$=($\sqrt{2},\sqrt{2},-2$),
∵$\overrightarrow{AC}•\overrightarrow{{D}_{1}F}$=-2+2+0=0,
∴异面直线AC与D1F所成的角为90°.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图所示,正方体的棱长为1,B'C∩BC'=O,则AO与A'C'所成角的度数为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=2cos2x-3acosx-3在x∈R上有零点,则实数a的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,在该四棱锥内部或表面任取一点O,则三棱锥O-PAB的体积不小于$\frac{2}{3}$的概率为$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则∠ABC=(  )
A.1200B.600C.450D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+bx+1(x∈R),(a,b为实数).
(1)若f(1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式;
(2)在(1)的条件下,若关于x方程|f(x+1)-1|=m|x-1|只有一个实数解,求实数m的取值范围;
(3)在(1)的条件下,求函数h(x)=2f(x+1)+x|x-m|+2m最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,圆C的方程为(x-$\sqrt{3}$)2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ=$\frac{π}{6}$(p∈R)与圆C交于点M,N,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两个单位向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为60°,点C在以O圆心的圆弧AB上移动,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则x+y的最大值为(  )
A.1B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列对应关系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A={x|x是三角形},B={x|x是圆},f:三角形对应它的外接圆
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:A中的数平方
其中是A到B的映射的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案