精英家教网 > 高中数学 > 题目详情
10.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$

分析 利用基本不等式的使用法则:“一正二定三相等”即可判断出结论.

解答 解:A.x<0时无最小值,不成立;
B.∵x∈(0,$\frac{π}{2}$),∴sinx∈(0,1),∴y>2,因此不成立;
C.$y=\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$>2,因此不成立;
D.y=$\sqrt{x}$+$\frac{4}{\sqrt{x}}$-2$≥2\sqrt{\sqrt{x}•\frac{4}{\sqrt{x}}}$-2=2,当且仅当x=4时取等号,成立.
故选:D.

点评 本题考查了基本不等式的使用法则:“一正二定三相等”,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=2cos2x-3acosx-3在x∈R上有零点,则实数a的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,圆C的方程为(x-$\sqrt{3}$)2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线OP:θ=$\frac{π}{6}$(p∈R)与圆C交于点M,N,求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两个单位向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为60°,点C在以O圆心的圆弧AB上移动,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则x+y的最大值为(  )
A.1B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=|x-1|-|2x+3|.
(1)解不等式f(x)>2;
(2)关于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)的二次项系数为a(a<0),且1和3是函数y=f(x)+2x的两个零点.若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=mx+b是R上的减函数,则(  )
A.m≥0B.m≤0C.m>0D.m<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列对应关系:
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A={x|x是三角形},B={x|x是圆},f:三角形对应它的外接圆
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:A中的数平方
其中是A到B的映射的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=0.65.1,b=5.10.6,c=log0.65.1,则(  )
A.a<b<cB.c<a<bC.c<b<aD.a<c<b

查看答案和解析>>

同步练习册答案