| A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
| C. | y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ | D. | $y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$ |
分析 利用基本不等式的使用法则:“一正二定三相等”即可判断出结论.
解答 解:A.x<0时无最小值,不成立;
B.∵x∈(0,$\frac{π}{2}$),∴sinx∈(0,1),∴y>2,因此不成立;
C.$y=\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$>2,因此不成立;
D.y=$\sqrt{x}$+$\frac{4}{\sqrt{x}}$-2$≥2\sqrt{\sqrt{x}•\frac{4}{\sqrt{x}}}$-2=2,当且仅当x=4时取等号,成立.
故选:D.
点评 本题考查了基本不等式的使用法则:“一正二定三相等”,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | (-∞,-1]∪[1,+∞) | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | (-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com