精英家教网 > 高中数学 > 题目详情
2.已知函数y=mx+b是R上的减函数,则(  )
A.m≥0B.m≤0C.m>0D.m<0

分析 利用一次函数的性质判断即可.

解答 解:函数y=mx+b是R上的减函数,可得m<0.
故选:D.

点评 本题考查函数的单调性的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一条光线从点A(0,2)射入,与x轴相交于点B(2,0),经x轴反射后过点C(m,1),直线l过点C且分别与x轴和y轴的正半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为(
A.x+$\frac{y}{3}$=1B.$\frac{x}{6}$+$\frac{y}{2}$=1C.$\frac{x}{4}$+$\frac{y}{4}$=1D.$\frac{x}{12}$+$\frac{3y}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等比数列{an}中,公比q≠1,等差数列{bn}满足a1=b1=3,a2=b4,a3=b13
(1)求数列{an}的{bn}通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an},{bn}满足a1=1且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b8=(  )
A.24B.32C.48D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>5,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在斜三棱柱ABC-A1B1C1中,点O、E分别是A1C1、AA1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)证明:OE∥平面AB1C1
(2)证明:AB1⊥A1C;
(3)设P是棱CC1 的中点,求P到侧面ABB1A的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(Ⅰ)求a,b;
(Ⅱ)求f(log2x)的最小值及相应 x的值;
(Ⅲ)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的渐近线方程为(  )
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{9}{16}$x

查看答案和解析>>

同步练习册答案