分析 (1)由中位线定理得出OE∥AC1,故而OE∥平面AB1C1;
(2)通过证明A1C⊥平面AB1C1得出AB1⊥A1C;
(3)利用等体积得出C1到平面AA1B1的距离d,即可得出P到侧面ABB1A的距离.
解答 证明:(1)∵点O、E分别是A1C1、AA1的中点,
∴OE∥AC1,
又∵EO?平面AB1C1,AC1?平面AB1C1,
∴OE∥平面AB1C1,
(2)∵AO⊥平面A1B1C1,B1C1?平面A1B1C1,
∴AO⊥B1C1,
又∵A1C1⊥B1C1,A1C1∩AO=O,
∴B1C1⊥平面A1C1CA,又A1C?平面A1C1CA,
∴A1C⊥B1C1.
∵AA1=AC,∴四边形A1C1CA为棱形,
∴A1C⊥AC1,又B1C1∩AC1=C1,B1C1?平面AB1C1,AC1?平面AB1C1,
∴A1C⊥平面AB1C1,又AB1?平面AB1C1,
∴AB1⊥A1C.
(3)解:由题意,P到侧面ABB1A的距离等于点C1到平面AA1B1的距离.
∵∠BCA=90°,AA1=AC=BC=2,
∴A1O=$\frac{1}{2}$A1C1=1,AC1=2,
∴AO=$\sqrt{3}$,A1B1=2$\sqrt{2}$,AB1=2$\sqrt{2}$,
∴${S}_{△{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{2}×2×2$=2,${S}_{△A{A}_{1}{B}_{1}}$=$\frac{1}{2}×2×\sqrt{8-1}$=$\sqrt{7}$
∴${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}$×2×$\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
设点C1到平面AA1B1的距离为d,则$\frac{2\sqrt{3}}{3}$=$\frac{1}{3}$×$\sqrt{7}$×d,即d=$\frac{2\sqrt{21}}{7}$,
∴P到侧面ABB1A的距离等于$\frac{2\sqrt{21}}{7}$.
点评 本题考查了线面平行的判定,线面垂直的判定,空间距离的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1200 | B. | 600 | C. | 450 | D. | 300 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 12 | D. | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com