精英家教网 > 高中数学 > 题目详情

已知集合A={x||x|≤2},数学公式,则A∩B=________.

{x|-2≤x<1}
分析:求出集合A中绝对值不等式的解集确定出集合A;把集合B中的不等式转化为两个不等式组,求出不等式组的解集确定出集合B,然后把求出的两集合的解集表示在数轴上,根据图形即可得到两集合的交集.
解答:由集合A中的不等式|x|≤2,解得-2≤x≤2,
∴集合A={x|-2≤x≤2};
由集合B中的不等式≤0,
可化为:,,解得:-5≤x<1,
∴集合B={x|-5≤x<1},
把两集合的解集表示在数轴上,如图所示:

根据图形得:A∩B={x|-2≤x<1}.
故答案为:{x|-2≤x<1}.
点评:此题属于以其他不等式的解法为平台,考查了交集的运算.此类题往往借助数轴,利用数形结合及转化的思想解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案