精英家教网 > 高中数学 > 题目详情
13.已知动点M(x,y)到点F(2,0)的距离比它到y轴的距离大2.
(1)求动点M的轨迹方程C.
(2)已知斜率为2的直线经过点F,且与轨迹C相交于A、B两点.求弦长|AB|.

分析 (1)把y轴向左平移2个单位变为x=-2,此时点M到直线x=-2的距离等于它到点(2,0)的距离,即可得到点M的轨迹方程.
(2)设直线l的倾斜解为α,则l与y轴的夹角θ=90°-α,cotθ=tanα=2,sinθ=$\frac{1}{\sqrt{5}}$,然后求出|AB|.

解答 解:(1)因为动点M(x,y)到点F(2,0)的距离比它到y轴的距离大2,
所以点M到直线x=-2的距离等于它到点(2,0)的距离,
因此点M的轨迹为抛物线,方程为y2=8x.
(2)设直线l的倾斜角为α,则l与y轴的夹角θ=90°-α,
由题意,cotθ=tanα=2,
∴sinθ=$\frac{1}{\sqrt{5}}$,
∴|AB|=$\frac{8}{si{n}^{2}θ}$=40.

点评 本题考查点M的轨迹方程,考查抛物线的定义,考查抛物线的焦点弦的求法,正确运用抛物线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一枚硬币连续抛5次,如果出现k次正面的概率等于出现k+3次正面的概率,那么k的值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A={x|y=$\sqrt{4-{x}^{2}}$},B={y|y=2x-1},则∁R(A∩B)=(  )
A.RB.C.(0,2]D.(-∞,0]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ADF⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是(  )
A.(0,$\frac{2}{5}$)B.($\frac{2}{5}$,$\frac{1}{3}$)C.($\frac{2}{5}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.长方体ABCD-A′B′C′D′中,交于顶点A的三条棱长分别为AD=3,AA′=2,AB=4,则从点A沿表面到C′的最短距离为(  )
A.5$\sqrt{2}$B.$\sqrt{41}$C.$\sqrt{53}$D.$\sqrt{45}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和Sn,a1=2,且点An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n≥2)在曲线x2-y2=2n上.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{{a}_{n}-1}{{2}^{n}}$}的前n项和为Tn,是否存在正整数n,使得Tn=3?若存在,求出n的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x-lnx.
(Ⅰ)求函数f(x)的单调区间和最小值;
(Ⅱ)若对任意x≥1,函数f(x)的图象总在直线y=ax-2的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0恒成立,则称函数f(x)在区间(a,b)上为“凹函数”;已知f(x)=-$\frac{1}{12}$x${\;}^{4}+\frac{m}{6}{x}^{3}+\frac{3}{2}{x}^{2}$在(1,3)上为“凹函数”,则实数m的取值范围是(  )
A.[2,+∞)B.[$\frac{31}{9}$,5]C.(2,+∞)D.($\frac{31}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.
(1)求椭圆C的方程;
(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

同步练习册答案