精英家教网 > 高中数学 > 题目详情

对于函数=x3+ax2-x+1,给出下列命题:

  ①该函数必有2个极值;       ②该函数的极大值必大于1;

③该函数的极小值必小于1;   ④方程=0一定有三个不等的实数根.

其中正确的命题是                 .(写出所有正确命题的序号)

 

【答案】

①、②、③

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数:f(x)=alnx-ax-3(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45o,是否存在实数m使得对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]在区间(t,3)上总不是单调函数?若存在,求m的取值范围;否则,说明理由;
(Ⅲ)求证:
ln2
2
×
ln3
3
×
ln4
4
×
ln5
5
×…×
lnn
n
1
n
(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)定义域为D的函数f(x),如果对于区间I内(I⊆D)的任意两个数x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,则称此函数在区间I上是“凸函数”.
(1)判断函数f(x)=lgx在R+上是否是“凸函数”,并证明你的结论;
(2)如果函数f(x)=x2+
a
x
1,2
上是“凸函数”,求实数a的取值范围;
(3)对于区间
c,d
上的“凸函数”f(x),在
c,d
上任取x1,x2,x3,…,xn
①证明:当n=2k(k∈N*)时,f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
成立;
②请再选一个与①不同的且大于1的整数n,
证明:f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
也成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城一模)对于定义在区间D上的函数f(x),若任给x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)试判断f(x)=x-1在区间[-2.1]上是否封闭,并说明理由;
(1)若函数g(x)=
3x+ax+1
在区间[3,10]上封闭,求实数a的取值范围;
(1)若函数h(x)=x3-3x在区间[a,b[(a,b∈Z)上封闭,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设函数f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(I)如果存在x1、x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(II)如果对于任意的s、t∈[
1
2
,2],都有f(s)≥g(t)成立,求实数a的取值范围..

查看答案和解析>>

同步练习册答案