精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=|x﹣3|+|x﹣4|.
(1)求函数 的定义域;
(2)若存在实数x满足f(x)≤ax﹣1,试求实数a的取值范围.

【答案】
(1)解:∵

它与直线y=2交点的横坐标为

∴不等式 的定义域为


(2)解:函数y=ax﹣1的图象是过点(0,﹣1)的直线,

作出图象,如下图:

结合图象可知,a取值范围为


【解析】(1)求出f(x)=|x﹣3|+|x﹣4|与直线y=2交点的横坐标为 ,由此能求出不等式 的定义域.(2)函数y=ax﹣1的图象是过点(0,﹣1)的直线,作出图象,结合图象能求出实数a的取值范围.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率.

(1)每次取出不放回;

(2)每次取出后放回.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是一块边长为7米的正方形铁皮,其中ATN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮,其中P是弧TN上一点.设,长方形的面积为S平方米.

(1)求关于的函数解析式;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢看书是否与性别有关,某校调查小组就“是否喜欢看书”这个问题,在全校随机调研了100名学生.

(1)完成下列列联表:

喜欢看书

不喜欢看书

合计

女生

15

50

男生

25

合计

100

(2)能否在犯错率不超过0.025的前提下认为“喜欢看书与性别有关”.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.

(1)求证:
(2)求∠PCE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点的中点.

(1)求证:直线平面

(2)求证:平面平面

(3)求直线与平面的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE、BE,∠APE的平分线与AE、BE分别交于点C、D,其中∠AEB=30°.

(1)求证:
(2)求∠PCE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.

(1)设总造价(元)表示为长度的函数;

(2)当取何值时,总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1),证明:当时,;当时,

(2)的极大值点,求.

查看答案和解析>>

同步练习册答案