精英家教网 > 高中数学 > 题目详情
甲、乙两个钢铁厂2010年的年产量均为100万吨,两厂通过革新炼钢技术、改善生产条件等措施,预计从2011年起,在今后10年内,甲厂的年产量每年都比上一年增加10万吨;以2010年为第一年,乙厂第n(n∈N*,n≥2)年的年产量每年都比上一年增加2n-1万吨.
(Ⅰ)“十二•五”期间(即2011年至2015年),甲、乙两个钢铁厂的累计钢产量共多少万吨?
(Ⅱ)若某钢厂的年产量首次超过另一钢厂年产量的2倍,则该钢厂于当年底将另一钢厂兼并,问:在今后10年内,其中一个钢厂能否被另一个钢厂兼并?若能,请推算出哪个钢厂在哪一年底被兼并;若不能,请说明理由.
考点:函数模型的选择与应用
专题:应用题,等差数列与等比数列
分析:(Ⅰ)由题意知,甲工厂第n年的年产量是构成等差数列,其首项为100,公差是10,而乙工厂的第n年的年产量是一个累加和为bn=100+2+22+23+…+2n-1,数列{an},{bn}的通项公式易得,可求“十二•五”期间(即2011年至2015年),甲、乙两个钢铁厂的累计钢产量;
(Ⅱ)比较两个通项公式,根据情况求出年份即可.
解答: 解:(Ⅰ)由题得,甲工厂第n年的年产量是一个等差数列的项,其首项为100,公差是10,∴an=10n+90,
乙工厂的第n年的年产量是一个累加和为bn=100+2+22+23+…+2n-1=2n+98,
∴“十二•五”期间(即2011年至2015年),甲、乙两个钢铁厂的累计钢产量共5×100+
5×4
2
×10+
2(1-25)
1-2
+490=1002万吨
(Ⅱ)各年的产量如下表
 n  1  2  3  4  5  6  7  8
 an  100  110  120  130  140  150  160  170
 bn  100  102  106  114  130 162   226  354
∴2018年底甲工厂将被乙工厂兼并.
点评:本题考查等差数列与等比数列的综合,考查用数列解决实际问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示的韦恩图中,阴影部分对应的集合是(  )
A、A∩B
B、∁U(A∩B)
C、A∩(∁UB)
D、(∁UA)∩B

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-ax(a>0),g(x)=bx2+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3](t≥-2)上的最小值;
(3)当b=
1-a
2
时,若函数h(x)=f(x)+g(x)在区间(-2,0)内恰有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为U=R,集合A={x|(x+3)(x-6)≥0},B={x|log2(x+2)<4}.  
(1)求集合A,集合B以及如图阴影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试用两种不同的方法证明如下不等式:若x,y,z∈R,则(
x+y+z
3
)2
x2+y2+z2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某简谐运动的图象对应的函数解析式为:y=
2
sin(2x-
π
4

(1)指出此简谐运动的周期、振幅、频率、相位和初相;
(2)利用“五点法”作出函数在[0,π]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:港口A北偏东30°方向的C处有一观测站,港口正东方向的B处有一轮船,测得BC为31n mile,该轮船从B处沿正西方向航行20n mile后到D处,测得CD为21n mile.
(1)求cos∠BDC;
(2)问此时轮船离港口A还有多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果数列{an}同时满足:(1)各项均为正数,(2)存在常数k,对任意n∈N*,an+12=anan+2+k都成立,那么,这样的数列{an}我们称之为“类等比数列”.由此各项均为正数的等比数列必定是“类等比数列”.问:
(1)若数列{an}为“类等比数列”,且k=(a2-a12,求证:a1、a2、a3成等差数列;
(2)若数列{an}为“类等比数列”,且k=0,a2、a4、a5成等差数列,求
a2
a1
的值;
(3)若数列{an}为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得an+an+2=λan+1对任意n∈N*都成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:0<a<b<c<d且a+d=b+c,求证:
a
+
d
b
+
c

查看答案和解析>>

同步练习册答案