Èç¹ûÊýÁÐ{an}ͬʱÂú×㣺£¨1£©¸÷Ïî¾ùΪÕýÊý£¬£¨2£©´æÔÚ³£Êýk£¬¶ÔÈÎÒân¡ÊN*£¬an+12=anan+2+k¶¼³ÉÁ¢£¬ÄÇô£¬ÕâÑùµÄÊýÁÐ{an}ÎÒÃdzÆÖ®Îª¡°ÀàµÈ±ÈÊýÁС±£®Óɴ˸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁбض¨ÊÇ¡°ÀàµÈ±ÈÊýÁС±£®ÎÊ£º
£¨1£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=£¨a2-a1£©2£¬ÇóÖ¤£ºa1¡¢a2¡¢a3³ÉµÈ²îÊýÁУ»
£¨2£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒk=0£¬a2¡¢a4¡¢a5³ÉµÈ²îÊýÁУ¬Çó
a2
a1
掙术
£¨3£©ÈôÊýÁÐ{an}Ϊ¡°ÀàµÈ±ÈÊýÁС±£¬ÇÒa1=a£¬a2=b£¨a¡¢bΪ³£Êý£©£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃan+an+2=¦Ëan+1¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦Ë£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÀà±ÈÍÆÀí
רÌ⣺ж¨Òå,ÍÆÀíºÍÖ¤Ã÷
·ÖÎö£º£¨1£©ÓÉж¨Òå¿ÉµÃ£¬
a
2
n+1
=anan+2+£¨a2-a1£©2£¬Áîn=1£¬×¢Òâµ½a1£¾0£¬»¯¼òÔËÓõȲîÊýÁе͍Òå¼´¿ÉÖ¤Ã÷£»
£¨2£©ÔËÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÐÔÖÊ£¬¼´¿ÉÇó³ö¹«±È£»
£¨3£©¿É´Ó±ØÒªÌõ¼þÈëÊÖÍÆ³ö£º´æÔÚ³£Êý¦Ë=
a2+b2-k
ab
£¬Ê¹an+an+2=¦Ëan+1£¬ÔÙ¼ÓÒÔÖ¤Ã÷£¬×¢Òâ¸ù¾Ýж¨Òå£¬ÍÆ³ö£¬µ±n¡ÊN*¶¼ÓÐan+an+2=
a1+a3
a2
an+1
£¬ÓÉa1£¬a2£¬µÃµ½a3£¬´Ó¶øµÃµ½¦Ë=
a2+b2-k
ab
£¬½áÂÛ³ÉÁ¢£®
½â´ð£º £¨1£©Ö¤Ã÷£ºµ±k=(a2-a1)2ʱ£¬ÔÚ
a
2
n+1
=anan+2+k
ÖУ¬Áîn=1µÃ
a
2
2
=a1a3+(a2-a1)2
£¬
¼´a1a3-2a1a2+
a
2
1
=0
£®
¡ßa1£¾0£¬¡àa3-2a2+a1=0£¬¼´a2-a1=a3-a2
¹Êa1£¬a2£¬a3³ÉµÈ²îÊýÁУ»         
£¨2£©½â£ºµ±k=0ʱ£¬
a
2
n+1
=anan+2
£¬
¡ßÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý¡àÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
 É蹫±ÈΪq£¨q£¾0£©£¬
¡ßa2£¬a4£¬a5³ÉµÈ²îÊýÁУ¬¡àa2+a5=2a4£¬
¼´a1q+a1q4=2a1q3£®¡ßa1£¾0£¬q£¾0£¬
¡àq3-2q2+1=0£¬£¨q-1£©£¨q2-q-1£©=0£¬
½âµÃq=1»òq=
1¡À
5
2
£¨ÉáÈ¥¸ºÖµ£©£®
¡à
a2
a1
=q=1
»ò
a2
a1
=q=
1+
5
2
£»
£¨3£©´æÔÚ³£Êý¦Ë=
a2+b2-k
ab
£¬Ê¹an+an+2=¦Ëan+1£®
£¨»ò´Ó±ØÒªÌõ¼þÈëÊÖa1+a3=¦Ëa2⇒¦Ë=
a1+a3
a2
=
a1+
a22-k
a1
a2
=
a2+b2-k
ab
£©
Ö¤Ã÷ÈçÏ£º¡ß
a
2
n+1
=anan+2+k
£¬¡à
a
2
n
=an-1an+1+k£¬n¡Ý2£¬n¡ÊN*
£¬
¡à
a
2
n+1
-
a
2
n
=anan+2-an-1an+1
£¬¼´
a
2
n+1
+an-1an+1=anan+2+
a
2
n
£¬
ÓÉÓÚan£¾0£¬´ËµÈʽÁ½±ßͬ³ýÒÔanan+1£¬µÃ
an+an+2
an+1
=
an-1+an+1
an
£¬
¡à
an+an+2
an+1
=
an-1+an+1
an
=¡­=
a1+a3
a2
£¬
¼´µ±n¡ÊN*¶¼ÓÐan+an+2=
a1+a3
a2
an+1
£¬
¡àa1=a£¬a2=b£¬
a
2
n+1
=anan+2+k
£¬¡àa3=
b2-k
a

¡à
a1+a3
a2
=
a+
b2-k
a
b
=
a2+b2-k
ab

¡à¶ÔÈÎÒân¡ÊN*¶¼ÓÐan+an+2=¦Ëan+1£¬
´Ëʱ¦Ë=
a2+b2-k
ab
£®
µãÆÀ£º±¾Ì⿼²éж¨Òå¼°Àí½âºÍÔËÓã¬Í¬Ê±¿¼²éµÈ²îÊýÁк͵ȱÈÊýÁе͍Ò塢ͨÏîºÍÐÔÖÊ£¬ÕýÈ·Àí½â¶¨ÒåÊǽâ¾ö´ËÀàÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÉÌÆ·Ô­¼Û200Ôª£¬ÈôÁ¬ÐøÁ½´ÎÕǼÛ10%ºó³öÊÛ£¬ÔòÐÂÊÛ¼ÛΪ£¨¡¡¡¡£©
A¡¢222ÔªB¡¢240Ôª
C¡¢242ÔªD¡¢484Ôª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒÁ½¸ö¸ÖÌú³§2010ÄêµÄÄê²úÁ¿¾ùΪ100Íò¶Ö£¬Á½³§Í¨¹ý¸ïÐÂÁ¶¸Ö¼¼Êõ¡¢¸ÄÉÆÉú²úÌõ¼þµÈ´ëÊ©£¬Ô¤¼Æ´Ó2011ÄêÆð£¬ÔÚ½ñºó10ÄêÄÚ£¬¼×³§µÄÄê²úÁ¿Ã¿Äê¶¼±ÈÉÏÒ»ÄêÔö¼Ó10Íò¶Ö£»ÒÔ2010ÄêΪµÚÒ»Ä꣬ÒÒ³§µÚn£¨n¡ÊN*£¬n¡Ý2£©ÄêµÄÄê²úÁ¿Ã¿Äê¶¼±ÈÉÏÒ»ÄêÔö¼Ó2n-1Íò¶Ö£®
£¨¢ñ£©¡°Ê®¶þ•Î塱ÆÚ¼ä£¨¼´2011ÄêÖÁ2015Ä꣩£¬¼×¡¢ÒÒÁ½¸ö¸ÖÌú³§µÄÀۼƸֲúÁ¿¹²¶àÉÙÍò¶Ö£¿
£¨¢ò£©Èôij¸Ö³§µÄÄê²úÁ¿Ê״γ¬¹ýÁíÒ»¸Ö³§Äê²úÁ¿µÄ2±¶£¬Ôò¸Ã¸Ö³§ÓÚµ±Äêµ×½«ÁíÒ»¸Ö³§¼æ²¢£¬ÎÊ£ºÔÚ½ñºó10ÄêÄÚ£¬ÆäÖÐÒ»¸ö¸Ö³§ÄÜ·ñ±»ÁíÒ»¸ö¸Ö³§¼æ²¢£¿ÈôÄÜ£¬ÇëÍÆËã³öÄĸö¸Ö³§ÔÚÄÄÒ»Äêµ×±»¼æ²¢£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2£¨2cos2¦Øx-1£©sin2¦Øx+cos£¨4¦Øx+
¦Ð
6
£©£¬¦Ø¡Ê£¨0£¬1£©£¬ÇÒº¯ÊýÓÐÒ»¸ö×î¸ßµã£¨
¦Ð
6
£¬1£©£®
£¨1£©ÇóʵÊý¦ØµÄÖµºÍº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóf£¨x£©ÔÚ[
¦Ð
12
£¬
5¦Ð
6
]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚ¡ÑO£¬BDÊÇ¡ÑOµÄÖ±¾¶£¬AE¡ÍCDÓÚµãE£¬DAƽ·Ö¡ÏBDE£®
£¨1£©Ö¤Ã÷£ºAEÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Èç¹ûAB=4£¬AE=2£¬ÇóCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
m
=£¨cos
x
2
£¬-1£©£¬
n
=£¨
3
sin
x
2
£¬cos2
x
2
£©£¬É躯Êýf£¨x£©=
m
n
+
1
2
£®
£¨1£©Èôx¡Ê[0£¬
¦Ð
2
]£¬f£¨x£©=
3
3
£¬ÇócosxµÄÖµ£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÇÒÂú×ã2acosB¡Ü2c-
3
b£®Çóf£¨A£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£¨
x
-
2
x2
£©n£¨n¡ÊN*£©µÄÕ¹¿ªÊ½ÖеÚÎåÏîµÄϵÊýÓëµÚÈýÏîµÄϵÊýµÄ±ÈÊÇ10£º1£®
£¨1£©Ö¤Ã÷£ºÕ¹¿ªÊ½ÖÐûÓг£ÊýÏ
£¨2£©ÇóÕ¹¿ªÊ½ÖжþÏîʽϵÊý×î´óµÄÏ
£¨3£©ÇóÕ¹¿ªÊ½ÖÐÓжàÉÙÏîÓÐÀíÏ£¨²»±ØÒ»Ò»Áгö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÖÓÐ8¸öÖÊÁ¿ºÍÍâÐÎÒ»ÑùµÄÇò£¬ÆäÖÐA1£¬A2£¬A3ΪºìÇòµÄ±àºÅ£¬B1£¬B2£¬B3Ϊ»ÆÇòµÄ±àºÅ£¬C1£¬C2ΪÀ¶ÇòµÄ±àºÅ£¬´ÓÈýÖÖÑÕÉ«µÄÇòÖзֱðÑ¡³öÒ»¸öÇò£¬·Åµ½Ò»¸öºÐ×ÓÄÚ£®
£¨1£©ÇóºìÇòA1±»Ñ¡ÖеĸÅÂÊ£»
£¨2£©Çó»ÆÇòB1ºÍÀ¶ÇòC1²»È«±»Ñ¡ÖеĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶þ´Îº¯Êýy=ax2µÄͼÏóÊÇ¿ª¿ÚÏòÉϵÄÅ×ÎïÏߣ¬Æä½¹µãµ½×¼ÏߵľàÀëΪ2£¬Ôòa=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸