【题目】已知椭圆的左、右焦点分别是,,点是椭圆上除长轴端点外的任一点,连接,,设的内角平分线交的长轴于点.
(Ⅰ)求实数的取值范围;
(Ⅱ)求的最大值.
科目:高中数学 来源: 题型:
【题目】近年来电子商务蓬勃发展,同时也极大地促进了快递行业的发展,为了更好地服务客户,某快递公司使用客户评价系统对快递服务人员的服务进行评价,每月根据客户评价评选出“快递之星”.已知“快递小哥”小张在每个月被评选为“快递之星”的概率都是,则小张在第一季度的3个月中有2个月都被评为“快递之星”的概率为_______;设小张在上半年的6个月中被评为“快递之星”的次数为随机变量X,则随机变量X的方差______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与直线相切于点,点与关于轴对称.
(1)求抛物线的方程及点的坐标;
(2)设是轴上两个不同的动点,且满足,直线、与抛物线的另一个交点分别为,试判断直线与直线的位置关系,并说明理由.如果相交,求出的交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆过点,离心率为,分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于两点.
(1)求椭圆的标准方程;
(2)记、的面积分别为、,若,求的值;
(3)记直线、的斜率分别为、,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行“新冠肺炎”防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如表,其中一等奖代表队比三等奖代表队多10人.该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动.并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中二等奖代表队有5人(同队内男女生仍采用分层抽样)
名次 性别 | 一等奖 代表队 | 二等奖 代表队 | 三等奖 代表队 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)从前排就坐的一等奖代表队中随机抽取3人上台领奖,用X表示女生上台领奖的人数,求X的分布列和数学期望E(X).
(2)抽奖活动中,代表队员通过操作按键,使电脑自动产生[﹣2,2]内的两个均匀随机数x,y,随后电脑自动运行如图所示的程序框图的相应程序.若电脑显示“中奖”,则代表队员获相应奖品;若电脑显示“谢谢”,则不中奖.求代表队队员获得奖品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com