【题目】已知抛物线
与直线
相切于点
,点
与
关于
轴对称.
(1)求抛物线
的方程及点
的坐标;
(2)设
是
轴上两个不同的动点,且满足
,直线
、
与抛物线
的另一个交点分别为
,试判断直线
与直线
的位置关系,并说明理由.如果相交,求出的交点的坐标.
【答案】(1)
,
;(2)
∥
,详见解析.
【解析】
(1)联立方程组,整理得
,根据
,求得
,得到抛物线
的方程,进而得到点
的坐标,从而求得点
的坐标.
(2)设
,直线
的方程为
,得出
的方程为
,
代入
,求得
,进而得到
,代入抛物线的方程求得
的坐标,利用斜率公式,即可得到结论.
(1)由题意,抛物线
与直线
相切于点
,
联立方程组
,消去
,得
,
所以
,解得
或
,
又
,解得
,所以抛物线
的方程为
,
由
,得
,所以切点为
,
因为点
与
关于
轴对称,点
的坐标
.
(2)直线
,理由如下:
依题意,直线
的斜率不为
,
设
,直线
的方程为
,
由(1)知点
,则
,所以直线
的方程为
,
代入
,解得
(舍)或
,所以
,
因为
,所以
关于
对称,得
,
同理得
的方程为
,代入
,
得
,
,
直线
的斜率为
,因此
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为
,则f(
)的值为( )
A.﹣1B.1C.
.D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
、
中,
,
,且
,
,设数列
、
的前
项和分别为
和
.
(1)若数列
是等差数列,求
和
;
(2)若数列
是公比为2的等比数列.
①求
;
②是否存在实数
,使
对任意自然数
都成立?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别是
,
,点
是椭圆
上除长轴端点外的任一点,连接
,
,设
的内角平分线
交
的长轴于点
.
![]()
(Ⅰ)求实数
的取值范围;
(Ⅱ)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有甲,乙两种不透明充气包装的袋装零食,每袋零食甲随机附赠玩具
,
,
中的一个,每袋零食乙从玩具
,
中随机附赠一个.记事件
:一次性购买
袋零食甲后集齐玩具
,
,
;事件
:一次性购买
袋零食乙后集齐玩具
,
.
(1)求概率
,
及
;
(2)已知
,其中
,
为常数,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边
的边长为3,点
,
分别是边
,
上的点,且
,
.如图2,将
沿
折起到
的位置.
![]()
(1)求证:平面
平面
;
(2)给出三个条件:①
;②二面角
大小为
;③
到平面
的距离为
.在中任选一个,补充在下面问题的条件中,并作答:
在线段
上是否存在一点
,使三棱锥
的体积为
,若存在,求出
的值;若不存在,请说明理由.
注:如果多个条件分别解答,按第一个解答给分。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥S一ABC中,△ABC与△SBC都是边长为1的正三角形,二面角A﹣BC﹣S的大小为
,若S,A,B,C四点都在球O的表面上,则球O的表面积为( )
![]()
A.
πB.
πC.
πD.3π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,焦点在
轴上的椭圆
与焦点在
轴上的椭圆
都过点
,中心都在坐标原点,且椭圆
与
的离心率均为
.
(Ⅰ)求椭圆
与椭圆
的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与
,
交于点A,B(点A、B不同于点M),当
的面积取最大值时,求两直线MA,MB斜率的比值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com