【题目】已知函数.
(1)若,求的取值范围;
(2)若存在唯一的极小值点,求的取值范围,并证明.
【答案】(1)(2);证明见解析;
【解析】
(1)可利用分离参数法,将问题转化为恒成立,然后研究的单调性,求出最大值;
(2)通过研究在内的变号零点,单调性情况确定唯一极小值点;若不能直接确定的零点范围及单调性,可以通过研究的零点、符号来确定的单调性,和特殊点(主要是能确定符号的点)处的函数值符号,从而确定的极值点的存在性和唯一性.
(1)的定义域为.
由,得在恒成立,
转化为
令,则,
∴在单调递增,在单调递减,
∴的最大值为,∴.
∴的取值范围是.
(2)设,则,,.
①当时,恒成立,在单调递增,
又,
所以存在唯一零点.
当时,,
当时,.
所以存在唯一的极小值点.
②当时,,在单调递增,,
所以在有唯一零点.
当时,,
当时,.
所以存在唯一的极小值点.
③当时,令,得;
令,得,
∴在单调递增,在单调递减,
所以的最大值为
④当时,,,,
(或用)
由函数零点存在定理知:
在区间,分别有一个零点,
当时,;
当时,;
所以存在唯一的极小值点,极大值点.
⑤当时,,
所以在单调递减,无极值点.
由①②④可知,a的取值范围为,
当时,;
所以在单调递减,单调递增.
所以.
由,得.
所以
,
因为,,
所以,
所以,即;
所以.
科目:高中数学 来源: 题型:
【题目】某商场进行抽奖促销活动,抽奖箱中有大小完全相同的4个小球,分别标有“A”“B”“C”“D”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“D”字球,则停止取球.获奖规则如下:依次取到标有““A”“B”“C”“D”字的球为一等奖;不分顺序取到标有“A”“B”“C”“D”字的球,为二等奖;取到的4个球中有标有“A”“B”“C”三个字的球为三等奖.
(1)求分别获得一、二、三等奖的概率;
(2)设摸球次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆C:上一点P作x轴的垂线,垂足为,已知,分别为椭圆C的左、右焦点,A,B分别是椭圆C的右顶点、上顶点,且,.
(1)求椭圆C的方程;
(2)过点的直线l交椭圆C于M,N两点,记直线PM,PN,MN的斜率分别为,问:是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中满足被3除余2且被5除余3的数按照从小到大的顺序排成一列,构成一个数列,则该数列的项数是( )
A.135B.134C.59D.58
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与直线相切于点,点与关于轴对称.
(1)求抛物线的方程及点的坐标;
(2)设是轴上两个不同的动点,且满足,直线、与抛物线的另一个交点分别为,试判断直线与直线的位置关系,并说明理由.如果相交,求出的交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天上有些恒星的亮度是会变化的,其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化.第一颗被描述的经典造父变星是在1784年.
上图为一造父变星的亮度随时间的周期变化图,其中视星等的数值越小,亮度越高,则此变星亮度变化的周期、最亮时视星等,分别约是( )
A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点下的距离为10.
(1)求抛物线C的方程;
(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:(a>b>0)的右焦点为F,椭圆C上的两点A,B关于原点对称,且满足,|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com