精英家教网 > 高中数学 > 题目详情

【题目】如图,过椭圆C上一点Px轴的垂线,垂足为,已知分别为椭圆C的左、右焦点,AB分别是椭圆C的右顶点、上顶点,且

1)求椭圆C的方程;

2)过点的直线l交椭圆CMN两点,记直线PMPNMN的斜率分别为,问:是否为定值?请说明理由.

【答案】12)是定值,定值

【解析】

1)由题意不妨设,则可得,又由,得,由可求解出,即得椭圆方程;

2)由题意知直线的方程为,设

联立方程得,消去并整理,得,利用根与系数的关系表示出,化简计算即得.

1)由题意可设,代入椭圆的方程得,,得,∴

,∴

,∴

∴椭圆的方程为

2)由题意知直线的方程为,设

联立方程得,消去并整理,得

为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(2)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa||x5|.

1)当a=2时,求证:﹣3≤f(x)≤3

2)若关于x的不等式f(x)≤x28x+20R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年初出现并在全球蔓延的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某药物研究所为筛查该种病毒,需要检验血液是否为阳性,现有,且)份血液样本,每个样本取到的可能性相等,有以下两种检验方式:

方式一:逐份检验则需要检验次;

方式二:混合检验,将份血液样本分别取样混合在一起检验,若检验结果为阴性,则这份的血液全为阴性,因而这份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为

1)假设有6份血液样本,其中只有2份样本为阳性,从中任取3份样本进行医学研究,求至少有1份为阳性样本的概率;

2)假设将)份血液样本进行检验,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为

①运用概率统计的知识,若,试求关于的函数关系式

②若与干扰素计量相关,其中数列满足,当时,试讨论采用何种检验方式更好?

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角ABC的对边分别为abc,且,若的面积为,则的周长的最小值为(

A.4B.C.6D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,且,设数列的前项和分别为.

1)若数列是等差数列,求

2)若数列是公比为2的等比数列.

①求

②是否存在实数,使对任意自然数都成立?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx,则函数yffx))﹣1的所有零点构成的集合为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的取值范围;

2)若存在唯一的极小值点,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面,点的中点,点为点关于直线的对称点,,.

1)求证:平面平面

2)直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案