精英家教网 > 高中数学 > 题目详情

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年初出现并在全球蔓延的新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某药物研究所为筛查该种病毒,需要检验血液是否为阳性,现有,且)份血液样本,每个样本取到的可能性相等,有以下两种检验方式:

方式一:逐份检验则需要检验次;

方式二:混合检验,将份血液样本分别取样混合在一起检验,若检验结果为阴性,则这份的血液全为阴性,因而这份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为

1)假设有6份血液样本,其中只有2份样本为阳性,从中任取3份样本进行医学研究,求至少有1份为阳性样本的概率;

2)假设将)份血液样本进行检验,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为

①运用概率统计的知识,若,试求关于的函数关系式

②若与干扰素计量相关,其中数列满足,当时,试讨论采用何种检验方式更好?

参考数据:

【答案】12)①).②当时采用混合检验方式,时采用逐份检验方式.

【解析】

1)利用古典概型的概率求至少有1份为阳性样本的概率;

2)①由题得,根据得到;②先求出,当时,得到不等式的解,即得当时采用混合检验方式,时采用逐份检验方式.

1)由古典概型的概率公式得.

2)①由已知,得的所有可能取值为1

,则

类于的函数关系式为).

②由已知得,数列是等比数列,且

,当时,有

∴当时,,即上单调减.

时,

时采用混合检验方式,时采用逐份检验方式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:是无穷数列,若存在正整数k使得对任意,均有则称是近似递增(减)数列,其中k叫近似递增(减)数列的间隔数

1)若是不是近似递增数列,并说明理由

2)已知数列的通项公式为,其前n项的和为,若2是近似递增数列的间隔数,求a的取值范围:

3)已知,证明是近似递减数列,并且4是它的最小间隔数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场进行抽奖促销活动,抽奖箱中有大小完全相同的4个小球,分别标有A”“B”“C”“D”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出D字球,则停止取球.获奖规则如下:依次取到标有““A”“B”“C”“D字的球为一等奖;不分顺序取到标有A”“B”“C”“D字的球,为二等奖;取到的4个球中有标有A”“B”“C三个字的球为三等奖.

1)求分别获得一、二、三等奖的概率;

2)设摸球次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知点到直线的距离为3.

1)求实数的值;

2)设是直线上的动点,在线段上,且满足,求点轨迹方程,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.

1)请将列联表填写完整:

有接触史

无接触史

总计

有武汉旅行史

27

无武汉旅行史

18

总计

27

54

2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来电子商务蓬勃发展,同时也极大地促进了快递行业的发展,为了更好地服务客户,某快递公司使用客户评价系统对快递服务人员的服务进行评价,每月根据客户评价评选出快递之星.已知快递小哥小张在每个月被评选为快递之星的概率都是,则小张在第一季度的3个月中有2个月都被评为快递之星的概率为_______;设小张在上半年的6个月中被评为快递之星的次数为随机变量X,则随机变量X的方差______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过椭圆C上一点Px轴的垂线,垂足为,已知分别为椭圆C的左、右焦点,AB分别是椭圆C的右顶点、上顶点,且

1)求椭圆C的方程;

2)过点的直线l交椭圆CMN两点,记直线PMPNMN的斜率分别为,问:是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)已知函数的图象在公共点(x0y0)处有相同的切线,

(i)求证:处的导数等于0;

(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

同步练习册答案