【题目】在极坐标系中,已知点
到直线
的距离为3.
(1)求实数
的值;
(2)设
是直线
上的动点,
在线段
上,且满足
,求点
轨迹方程,并指出轨迹是什么图形.
科目:高中数学 来源: 题型:
【题目】下图是2020年2月15日至3月2日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是( )
![]()
A.2020年2月19日武汉市新增新冠肺炎确诊病例大幅下降至三位数
B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武汉市新增新冠肺炎确诊病例低于400人的有8天
D.2020年2月15日到3月2日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为
,则f(
)的值为( )
A.﹣1B.1C.
.D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣|x﹣5|.
(1)当a=2时,求证:﹣3≤f(x)≤3;
(2)若关于x的不等式f(x)≤x2﹣8x+20在R恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为实常数且
).
(Ⅰ)当
时;
①设
,判断函数
的奇偶性,并说明理由;
②求证:函数
在
上是增函数;
(Ⅱ)设集合
,若
,求
的取值范围(用
表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征
和严重急性呼吸综合征
等较严重疾病.而今年初出现并在全球蔓延的新型冠状病毒
是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.
某药物研究所为筛查该种病毒,需要检验血液是否为阳性,现有
(
,且
)份血液样本,每个样本取到的可能性相等,有以下两种检验方式:
方式一:逐份检验则需要检验
次;
方式二:混合检验,将
份血液样本分别取样混合在一起检验,若检验结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这
份血液究竟哪几份为阳性,就要对这
份再逐份检验,此时这
份血液的检验次数总共为
次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
.
(1)假设有6份血液样本,其中只有2份样本为阳性,从中任取3份样本进行医学研究,求至少有1份为阳性样本的概率;
(2)假设将
(
且
)份血液样本进行检验,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
;
①运用概率统计的知识,若
,试求
关于
的函数关系式
;
②若
与干扰素计量
相关,其中数列
满足
,当
时,试讨论采用何种检验方式更好?
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
、
中,
,
,且
,
,设数列
、
的前
项和分别为
和
.
(1)若数列
是等差数列,求
和
;
(2)若数列
是公比为2的等比数列.
①求
;
②是否存在实数
,使
对任意自然数
都成立?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边
的边长为3,点
,
分别是边
,
上的点,且
,
.如图2,将
沿
折起到
的位置.
![]()
(1)求证:平面
平面
;
(2)给出三个条件:①
;②二面角
大小为
;③
到平面
的距离为
.在中任选一个,补充在下面问题的条件中,并作答:
在线段
上是否存在一点
,使三棱锥
的体积为
,若存在,求出
的值;若不存在,请说明理由.
注:如果多个条件分别解答,按第一个解答给分。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com