分析 (1)设从甲地调运x台至A地,则从甲地调运(12-x)台到B地,从乙地调运(10-x)台到A地,从乙地调运6-(10-x)=x-4台到B地,然后列出函数解析式.注明定义域.
(2)利用y≤9000,得到不等式求解即可.
(3)利用函数y=-200x+10600(0≤x≤10,x∈Z)是单调减函数,直接求解即可.
解答 (本题满分12分)
解:(1)设从甲地调运x台至A地,则从甲地调运(12-x)台到B地,
从乙地调运(10-x)台到A地,从乙地调运6-(10-x)=x-4台到B地,
依题意,得y=400x+800(12-x)+300(10-x)+500(x-4),
即y=-200x+10600(0≤x≤10,x∈Z).…(6分)
(2)由y≤9000,即-200x+10600≤9000,
解得x≥8.
因为0≤x≤10,x∈Z,
所以x=8,9,10
答:共有三种调运方案.…(9分)
(3)因为函数y=-200x+10600(0≤x≤10,x∈Z)是单调减函数,
所以当x=10时,总运费y最低,ymin=8600(元).…(11分)
此时调运方案是:从甲分厂调往A地10台,调往B地2台,
乙分厂的6台机器全部调往B地.…(12分)
点评 本题考查利用函数的解析式求解函数的实际问题,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+π}{π}$ | B. | $\frac{1+2π}{π}$ | C. | $\frac{1+2π}{2π}$ | D. | $\frac{1+4π}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{16}$ | B. | $\frac{1}{4}$ | C. | $-\frac{9}{16}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com