精英家教网 > 高中数学 > 题目详情
3.已知函数g(x)=$\frac{x+1}{x+2}$,f(x)=x+$\frac{1}{g(x)}$.
(1)写出函数f(x)的定义域
(2)求证.函数f(x)在区间(0,+∞)上是增函数.

分析 (1)根据函数的解析式,求出f(x)的定义域即可;
(2)利用单调性的定义即可证明函数f(x)在区间(0,+∞)上是增函数.

解答 解:(1)∵函数g(x)=$\frac{x+1}{x+2}$,
f(x)=x+$\frac{1}{g(x)}$=x+$\frac{x+2}{x+1}$,
∴$\left\{\begin{array}{l}{x+2≠0}\\{\frac{x+1}{x+2}≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≠-2}\\{x≠-1}\end{array}\right.$,
∴函数f(x)的定义域为
(-∞,-2)∪(-2,-1)∪(-1,+∞);…(4分)
(2)f(x)=x+$\frac{x+2}{x+1}$=x+1+$\frac{1}{x+1}$
任取x1,x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=(x1+1+$\frac{1}{{x}_{1}+1}$)-(x2+1+$\frac{1}{{x}_{2}+1}$)
=(x1-x2)•$\frac{{{x}_{1}x}_{2}{+x}_{1}{+x}_{2}}{{(x}_{1}+1){(x}_{2}+1)}$;
∵x1,x2∈(0,+∞),
∴x1-x2<0,$\frac{{{x_1}{x_2}+{x_1}+{x_2}}}{{({x_1}+1)({x_2}+2)}}>0$,
∴f(x1)<f(x2);
∴f(x)在区间(0,+∞)上是增函数.(8分)

点评 本题考查了根据函数的解析式求定义域以及利用定义证明函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{2^x}+1,x<1\\{x^2}+ax,x≥1\end{array}$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知过点A(1,1),且斜率为-m(m>0)的直线l与x,y轴分别交于P,Q,过P,Q作直线2x+y=0的垂线,垂足为R,S,
(1)用含m的表达式写出PR,QS,SR的长
(2)求四边形PRSQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个直角△ABC的三边分别是AC=3,BC=4,AB=5,将这个三角形绕直角边BC旋转一周,所形成的几何体的表面积是24π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=sin2x+3cosx+2,|x|≤$\frac{π}{3}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=4,E,F,H分别是棱PB,BC,PD的中点,则过E,F,H的平面截四棱锥P-ABCD所得截面面积为(  )
A.$2\sqrt{6}$B.$4\sqrt{6}$C.$5\sqrt{6}$D.$2\sqrt{3}+4\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)同时满足:
①对于定义域上的任意x恒有f(x)+f(-x)=0,
②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0,则称函数f(x)为“理想函数”.
给出下列四个函数中:(1)f(x)=x,(2)f(x)=$\frac{1}{x}$,(3)f(x)=x2,(4)f(x)=$\left\{{\begin{array}{l}{-{x^2},x≤0}\\{{x^2},x>0}\end{array}}$.
能被称为“理想函数”的有(1)(4).(填写相应序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直线l:y=x+m与椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1.
(Ⅰ)当m=1时,求直线l截椭圆所得弦AB的长;
(Ⅱ)若l与C交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求出实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A地10台,B地8台,已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.
(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;
(2)若总运费不超过9000元,问共有几种调运方案;
(3)求出总运费最低的调运方案及最低的费用.

查看答案和解析>>

同步练习册答案