分析 由“理想函数”的定义可知:若f(x)是“理想函数”,则f(x)为定义域上的单调递增的奇函数,将四个函数一一判断即可.
解答 解:若f(x)是“理想函数”,则满足以下两条:
①对于定义域上的任意x,恒有f(x)+f(-x)=0,即f(-x)=-f(x),则函数f(x)是奇函数;
②对于定义域上的任意x1,x2,当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,即(x1-x2)[f(x1)-f(x2)]>0,∴x1<x2时,f(x1)<f(x2),即函数f(x)是单调递增函数.
故f(x)为定义域上的单调递增的奇函数.
(1)f(x)=x在定义域R上既是奇函数,又是增函数,所以是“理想函数”;
(2)f(x)=$\frac{1}{x}$在定义域上不是增函数,所以不是“理想函数”;
(3)f(x)=x2在定义域R上不是奇函数,所以不是“理想函数”;
(4)由图象可知,f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{{x}^{2},x>0}\end{array}\right.$在定义域R上既是奇函数,又是增函数,所以是“理想函数”.![]()
故答案为:(1)(4)
点评 本题考查新定义的理解和运用,主要考查函数的奇偶性和单调性,注意运用定义法是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 6 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<r<2 | B. | 0<r<1 | C. | r>2 | D. | 1<r<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+π}{π}$ | B. | $\frac{1+2π}{π}$ | C. | $\frac{1+2π}{2π}$ | D. | $\frac{1+4π}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{16}$ | B. | $\frac{1}{4}$ | C. | $-\frac{9}{16}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com