【题目】如图,某市郊外景区内一条笔直的公路
经过三个景点
、
、
,景区管委会又开发了风景优美的景点
,经测量景点
位于景点
的北偏东
方向
处,位于景点
的正北方向,还位于景点
的北偏西
方向上,已知
.
![]()
(1)景区管委会准备由景点
向景点
修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到
)
(2)求景点
与景点
之间的距离.(结果精确到
)
【答案】(1)
;(2)
.
【解析】
(1)过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE的问题就可以转化为求∠DBE的度数或三角函数值的问题.
(2)Rt△DCE中根据三角函数就可以求出CD的长.
(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F
在Rt△DAF中,∠ADF=30°,∴AF
AD
8=4,∴DF
;
在Rt△ABF中,BF
3,∴BD=DF﹣BF=4
3
sin∠ABF
,在Rt△DBE中,sin∠DBE
,
∵∠ABF=∠DBE,∴sin∠DBE
,
∴DE=BDsin∠DBE
(4
3)
3.1(km)
∴景点D向公路a修建的这条公路的长约是3.1km;
(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE
0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°
在Rt△DCE中,sin∠DCE
,∴DC
4.0(km)
∴景点C与景点D之间的距离约为4.0km.
![]()
科目:高中数学 来源: 题型:
【题目】已知双曲线 C 经过点 (2,3),它的渐近线方程为 y = ±
.椭圆 C1与双曲线 C有相同的焦点,椭圆 C1的短轴长与双曲线 C 的实轴长相等.
(1)求双曲线 C 和椭圆 C1 的方程;
(2)经过椭圆 C1 左焦点 F 的直线 l 与椭圆 C1 交于 A、B 两点,是否存在定点 D ,使得无论 AB 怎样运动,都有∠ADF = ∠BDF ?若存在,求出 D 点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了
户家庭进行问卷调查,经调查发现,这些家庭的月收人在
元到
元之间,根据统计数据作出:
(1)经统计发现,该社区居民的家庭月收人
(单位:百元)近似地服从正态分布
,其中
近似为样本平均数.若
落在区间
的左侧,则可认为该家庭属“收入较低家庭" ,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区
家庭月收入为
元,试判断
家庭是否属于“收人较低家庭”,并说明原因;
(2)将样本的频率视为总体的概率
①从该社区所有家庭中随机抽取
户家庭,若这
户家庭月收人均低于
元的概率不小于
,求
的最大值;
②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调在的家庭制定了贈送购物卡的活动,贈送方式为:家庭月收入低于
的获赠两次随机购物卡,家庭月收入不低于
的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:
赠送购物卡金额(单位:元) |
|
|
|
概率 |
|
|
|
则
家庭预期获得的购物卡金额为多少元?(结果保留整数)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为丰富教职工生活,在元旦期间举办趣味投篮比赛,设置A,B两个投篮位置,在A点投中一球得1分,在B点投中一球得2分,规则是:每人按先A后B的顺序各投篮一次(计为投篮两次),教师甲在A点和B点投中的概率分别为
和
,且在A,B两点投中与否相互独立.
(1)若教师甲投篮两次,求教师甲投篮得分0分的概率
(2)若教师乙与教师甲在A,B投中的概率相同,两人按规则投篮两次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中
,以原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
,曲线
的参数方程为:
(
为参数),
,
为直线
上距离为
的两动点,点
为曲线
上的动点且不在直线
上.
(1)求曲线
的普通方程及直线
的直角坐标方程.
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=
米,记∠BHE=
.
![]()
(1)试将污水净化管道的长度L表示为
的函数,并写出定义域;
(2)当
取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
;
(1)当
时,若
,求
的取值范围;
(2)若定义在
上奇函数
满足
,且当
时,
,
求
在
上的反函数
;
(3)对于(2)中的
,若关于
的不等式
在
上恒成立,求实
数
的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com