精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
x
-log2
1+mx
1-x
是奇函数.
(1)求m的值;
(2)请讨论它的单调性,并给予证明.
分析:(1)由函数奇偶性的定义可知,f(-x)+f(x)=0,将f(x)的解析式代入求解m即可.
(2)先求出f(x)的定义域,因为函数是奇函数,故只要先判断f(x)在(0,1)内的单调性即可,可由单调性的定义直接判断.
解答:解:(1)∵f(x)是奇函数,∴f(-x)+f(x)=0;
(-
2
x
-log2
1-mx
1+x
)+(
2
x
-log2
1+mx
1-x
)=0
,解得:m=1,其中m=-1(舍);
经验证当m=1时,f(x)=
2
x
-log2
1+x
1-x
(x∈(-1,0)∪(0,1))
确是奇函数.
(2)先研究f(x)在(0,1)内的单调性,任取x1、x2∈(0,1),且设x1<x2,则
f(x1)-f(x2)=
2
x1
-
2
x2
+[lo g2(
2
1-x2
-1)-log2(
2
1-x1
-1)]

2
x1
-
2
x2
>0,log2(
2
1-x2
-1)-log2(
2
1-x1
-1)>0

得f(x1)-f(x2)>0,即f(x)在(0,1)内单调递减;
由于f(x)是奇函数,其图象关于原点对称,所以函数f(x)在(-1,0)内单调递减.
点评:本题考查函数单调性的判断和证明及已知奇偶性求参数和奇偶性的应用问题,属基本题型的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案