精英家教网 > 高中数学 > 题目详情
在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午9时测得一轮船在海岛北偏东30°,俯角为30°的B处,匀速直行10分钟后,测得该船位于海岛北偏西60°,俯角为45°的C处.从C处开始,该船航向改为正南方向,且速度大小不变,则该船经过10分钟后离开A点的距离为(  )
A、1千米
B、2千米
C、
3
千米
D、2
3
千米
考点:解三角形的实际应用
专题:应用题,解三角形
分析:设BC交南北轴于点E,延长BC交东西轴于点F,进而利用三角形内角和求得∠FAC和∠FCA,设10分钟后该船到达点D,进而求得CD,在△ACD中运用余弦定理求得AD的长.
解答: 解:设BC交南北轴于点E,延长BC交东西轴于点F,则∠FAC=90°-∠CAE=90°-60°=30°,
∠FCA=180°-60°=120°,
设10分钟后该船到达点D,因为该船向正南航行,所以∠ACD=∠CAE=60°,
10分钟所走的航程是CD=2(千米),
在△ACD中,由余弦定理得:AD2=CD2+AC2-2CD•ACcos∠ACD=4+1-2×2×1×
1
2
=3,
∴AD=
3
(千米)
∴△CAD是直角三角形,∠CAD=90°,而∠FAC=30°,
∴∠FAD=90°-30°=60°.
∴10分钟后该船距离在点A西偏南60°,距离A点
3
千米处.
故选:C.
点评:本小题主要考查解三角形的有关知识及空间想象能力,具体涉及到余弦定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b满足1003a+1004b=2006b,997a+1009b=2007a,则a与b的大小关系为(  )
A、a<bB、a>b
C、a≤bD、a≥b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(-x2+log2ax)对任意x∈(0,
1
2
]都有意义,则实数a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是(  )
A、33πcm2
B、42πcm2
C、48πcm2
D、52πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别为F1,F2,过F1的直线分别交双曲线的两条渐近线于点P,Q.若点P是线段F1Q的中点,且QF1⊥QF2,则此双曲线的离心率等于(  )
A、
3
B、2
C、
5
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

将7个红球,6个白球(小球只有颜色的区别)放入5个不同盒子,要求每个盒子中至少红球、白球各一个,则不同的放法共有(  )
A、20种B、25种
C、45种D、75种

查看答案和解析>>

科目:高中数学 来源: 题型:

若数据组k1,k2…k8的平均数为3,方差为3,则2(k2+3),2(k2+3)…2(k8+3)的方差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是曲线y=
2x
上的一个动点,过点P作圆(x-3)2+y2=1 的切线,切点分别为M,N,当|MN|的值最小时点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,4a+b=1,则ab的最大值是(  )
A、
1
4
B、
1
8
C、
1
16
D、1

查看答案和解析>>

同步练习册答案