精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=9x-m•3x+1,若存在实数x,使等式f(-x)+f(x)=0成立,则实数m的最小值为$\frac{1}{3}$.

分析 由已知推导出3m=${3}^{x}+{3}^{-x}-\frac{2}{{3}^{x}+{3}^{-x}}$,令t=3x+3-x,则t≥2,得到3m=t-$\frac{2}{t}$(t≥2)在[2,+∞)上是单调增函数,由此能求出实数m的最小值.

解答 解:∵函数f(x)=9x-m•3x+1,存在实数x,使等式f(-x)+f(x)=0成立,
∴9-x-m•3-x+1=-9x+m•3x+1
∴m(3x+1+3-x+1)=9x+9-x
∴3m=$\frac{{9}^{x}+{9}^{-x}}{{3}^{x}+{3}^{-x}}$=$\frac{({3}^{x}+{3}^{-x})^{2}-2}{{3}^{x}+{3}^{-x}}$=${3}^{x}+{3}^{-x}-\frac{2}{{3}^{x}+{3}^{-x}}$,
令t=3x+3-x,则t≥2,
∵函数y=t与y=-$\frac{2}{t}$在[2,+∞)上均为单调递增函数,
∴3m=t-$\frac{2}{t}$(t≥2)在[2,+∞)上是单调增函数,
当t=2时,3m=t-$\frac{2}{t}$(t≥2)取得最小值1,即3m≥1,
∴$m≥\frac{1}{3}$.∴实数m的最小值为$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查函数中参数的最小值的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.各项均不为零的数列{an},首项a1=1,且对于任意n∈N*均有6an+1-an+1an-2an=0,bn=$\frac{1}{a_n}$.
(1)求{bn}的通项公式.
(2)若{bn}的前n项和为Tn,求证:当n≥2时,$\frac{8}{3}(n+1){T_n}$>(n+1)Cn+102n+nCn+112n-1+(n-1)Cn+122n-2+…+(n+1-k)Cn+1k2n-k+…+Cn+1n20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若$\overrightarrow{CA}•\overrightarrow{CB}=0$,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC,内角A,B,C的对边分别为a,b,c,若$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$,则$\frac{sinC}{sinA}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在R上的奇函数,且f(x)+3=f(x+1),则f(1)的值为(  )
A.1B.0C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若方程k(x-2)+8=x3有三个不同的根,则k的取值范围是{k|k>3且k≠12}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A,B是两个定点,且|AB|=2,动点M到A的距离为4,线段MB的垂直平分线l交MA于点P.
(1)求点P的轨迹方程;
(2)若点P到A,B两点的距离之积为m,则m取最大值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2)
(1)求证:{an+1+2an}是等比数列
(2)求数列{an}的通项公式
(3)设3nbn=n(3n-an),求|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}是公比为2的等比数列,若a1=2.则$\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$=(  )
A.$\frac{1}{3}$(1-$\frac{1}{{2}^{n}}$)B.$\frac{1}{3}$(4n-1)C.$\frac{1}{3}$(1-$\frac{1}{{4}^{n}}$)D.1-$\frac{1}{{4}^{n}}$

查看答案和解析>>

同步练习册答案