精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lg
a-x1+x

(Ⅰ)若f(x)为奇函数,求a的值;
(Ⅱ)若f(x)在(-1,5]内有意义,求a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,若f(x)在(m,n)上的值域为(-1,+∞),求(m,n).
分析:(Ⅰ)由题意可得f(x)+f(-x)=0对于定义域内的任意x都成立,即lg
a-x
1-x
+lg
a+x
1-x
=0
,整理可求a
(Ⅱ)由题意可得,在(-1,5]上
a-x
1+x
>0
恒成立,从而可求a的范围
(Ⅲ)结合t=
1-x
1+x
=-1+
2
x+1
,y=lgt的单调性及复合函数的单调性可知y=f(x)=lg
1-x
1+x
是减函数,从而可得f(n)=-1,f(m)无意义,可求
解答:(Ⅰ)解:∵f(x)为奇函数
∴f(x)+f(-x)=0对于定义域内的任意x都成立
lg
a-x
1-x
+lg
a+x
1-x
=0

(a-x)(a+x)
1-x2
=1

∴a=1…(4分)
(Ⅱ)解:∵若f(x)在(-1,5]内恒有意义,则在(-1,5]上
a-x
1+x
>0

∵x+1>0
∴a-x>0
∴a>x在(-1,5]上恒成立
∴a>5…(10分)
(Ⅲ)∵x∈(-1,1)时,t=
1-x
1+x
=-1+
2
x+1
是减函数
y=lgt在定义域内是增函数(13分)
y=f(x)=lg
1-x
1+x
在(-1,1)上是减函数
∵f(x)在(m,n)上的值域为(-1,+∞),且函数单调递减
∴(m,n)⊆(-1,1)
∴函数f(x)在x=n处取得函数的最小值-1,
f(n)=lg
1-n
1+n
=-1
,f(m)没有意义
1-n
1+n
=
1
10

∴n=
9
11
,m=-1
∴(m,n)=(-1,
9
11
)
…(16分)
点评:本题主要考查了奇函数的定义f(-x)=-f(x)的应用,函数的恒成立与函数的最值求解的相互转化,及利用函数的单调性求解函数的最值,属于函数知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案