精英家教网 > 高中数学 > 题目详情
10.下列三种说法中:①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”②“命题p∨q为真”是“命题p∧q为真”的必要而不充分条件;③“若am2<bm2,则a<b的逆命题为真”其中错误的是(  )
A.B.①②C.①③D.

分析 ①根据命题“?x∈R+,x2-x>0”是特称命题,其否定为全称命题,从而得到答案.
②由真值表可知若p∧q为真命题,则p、q都为真命题,从而p∨q为真命题,反之不成立,故由充要条件定义知p∨q为真命题是p∧q为真命题的必要不充分条件
③首先写出其逆命题,再根据不等式的性质,当不等号两边乘以一个正数时,不等号才不改变方向.即可进行判断;

解答 解:①∵命题“?x∈R+,x2-x>0”是特称命题∴否定命题为:?x∈R+,使得x2-x≤0.①对.
②∵p∨q为真命题,则p、q中只要有一个命题为真命题即可,p∧q为真命题,则需两个命题都为真命题,
∴p∨q为真命题不能推出p∧q为真命题,而p∧q为真命题能推出p∨q为真命题
∴p∨q为真命题是p∧q为真命题的必要不充分条件,②对
③若am2<bm2,则a<b的逆命题为若a<b,则am2<bm2,由不等式的基本性质知,若a<b,可得到am2<bm2,则m2为正数,故只须当m≠0,由a<b,可得到am2<bm2.故错误;
故选:A

点评 此题考查四种命题的真假判断、特称命题的否定、“或”“且”“非”等联接词的真假判断.在做题过程中比较容易失误,应引起重视,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a∈R,函数f(x)=x|x-a|.
(1)判断函数f(x)的奇偶性,请说明理由
(2)若函数在区间[3,+∞)上单调递增,求实数a的取值范围;
(3)求函数f(x)在区间[1,2]上的最小值g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点S,且DS=2SB,P为AC的中点.
求证:(Ⅰ)∠PBD=30°;
(Ⅱ)AD=DC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≤0}\\{x-3+lnx,}&{x>0}\end{array}\right.$的零点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知xy=1,且O<y<$\frac{1}{2}$,则$\frac{{x}^{2}+16{y}^{2}}{x-4y}$的最小值为(  )
A.2$\sqrt{2}$B.$\frac{17}{3}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二项式${(x-\frac{2}{x})^4}$的展开式中,含x2项的系数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如右图所示,其中支出在[40,50)元的同学有39人,则n的值为(  )
A.100B.120C.130D.390

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,设A,B为函数f(x)=1-x2的图象与x轴的两个交点,C,D为函数f(x)的图象上的两个动点,且C,D在x轴上方(不含x轴),则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值范围为(-4,$\frac{3\sqrt{3}}{2}$-$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(cos2x,sinx),$\overrightarrow{b}$=(1,2cosx),将函数f(x)=$\overrightarrow{a}$,$\overrightarrow{b}$的图象向左平移φ(0<φ<π)个单位,得到函数g(x)的图象,若g(x)为奇函数,则φ的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{2}$D.π

查看答案和解析>>

同步练习册答案