精英家教网 > 高中数学 > 题目详情
已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,P为双曲线左支上一点,若
|PF1|
|PF2|
=
1
8
,则双曲线的离心率的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设P点的横坐标为x,根据8|PF1|=|PF2|,P在双曲线左支上一点(x≤-a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.
解答: 解:设P点的横坐标为x,
∵8|PF1|=|PF2|,P在双曲线左支上一点(x≤-a),
根据双曲线的第二定义,可得e(
a2
c
-x)=8e(-x-
a2
c

∴8a+a=7x(-e),
∵x≤-a,∴-a•(-7e)≤9a,
∴e≤
9
7

∵e>1,∴1<e≤
9
7

故答案为:(1,
9
7
].
点评:本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的方程为y=kx+k+1,当点P(2,-1)与直线l距离最远时,直线l的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知射线OA:
3
x-y=0,射线OB:
3
x+3y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B点.
(1)当AB的中点为P时,求直线AB的方程;
(2)当线段AB的中点在直线y=
3
3
x上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体的棱长a,点C,D分别是两条棱的中点.
(1)证明:四边形ABCD是一个梯形;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4,g(x)=
2x
2x+1

(1)求函数y=g(x)的值域;
(2)求函数y=f(x)的最小值m(a);
(3)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足z•
.
z
+z+
.
z
=3,则z对应轨迹的参数方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-
b
x
-2lnx,且f(1)=0.
(1)若f(x)在x=2处有极值,求a,b的值;
(2)求a的范围,使f(x)在定义域内恒有极值点;
(3)若a=1,求曲线y=f(x)上任一点P到直线x-y+1=0的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则Eξ为(  )
A、1B、1.5C、2D、2.5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x),函数f(x)=
m
n
,g(x)=
n 
2

(Ⅰ)求函数g(x)的最小正周期;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,R为△ABC外接圆的半径,且f(C)=3,c=1,sinAsinB=
2
3
4R2
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案