精英家教网 > 高中数学 > 题目详情
已知集合A={x|x≥1},B={x|x≥a},若A⊆B,求a的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:根据已知条件及子集的概念,即可求得a的取值范围.
解答: 解:∵A⊆B;
∴a≤1;
∴a的取值范围是(-∞,1].
点评:考查子集的概念,可以用数轴表示集合A,B,通过观察数轴得出a的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在区间(-∞,0)上为增函数的是(  )
A、y=-
1
x
B、y=1
C、y=-x2-2x-1
D、y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2
x-log2x,且实数0<a<b<c满足f(a)f(b)f(c)<0,若实数x0是函数y=f(x)的一个零点,那么下列不等式中不可能成立的是(  )
A、x0<a
B、x0<c
C、x0>b
D、x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=log a
1
1-x

①当0<a<1时,解不等式2f(x)+g(x)≥0;
②当a>1,且x∈[0,1)时,总有2f(x)+g(x)≥m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知lg2=a,lg3=b,试用a,b表示log512. 
(2)已知向量
a
b
c
两两所成的角相等,且|
a
|=1,|
b
|=2,|
c
|=3,求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
9
+
y2
5
=1的焦点,点P在椭圆上且∠F1PF2=
π
3
,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x是偶函数
(1)求m、n的值;
(2)求函数y=f(x)在区间[-1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥A-BCDE中,AD=
1
2
AE,二面角A-DE-B成直二面角,∠DBC=∠DAE=60°,AD=1.
(Ⅰ)求证:AD⊥平面BCED;
(Ⅱ)若BD⊥AC,平面ABC与平面BCD所成的角为30°,求三棱锥A-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=3sin(
π
6
-2x)(-
1
24
π<x<
5
12
π)的单调区间和值域.

查看答案和解析>>

同步练习册答案