精英家教网 > 高中数学 > 题目详情
10.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=-1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标方程.
(1)求曲线C的极坐标方程;
(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.

分析 ( I)利用平方关系可得曲线C的普通方程,把x=ρcosθ,y=ρsinθ,代入即可得出.
(II)联立θ=α和ρ2+2ρcosθ-2ρsinθ-2=0,得ρ2+2ρ(cosα-sinα)-2=0,设A(ρ1,α),B(ρ2,α),可得ρ12=2(cosα-sinα)=2$\sqrt{2}$$sin(α-\frac{π}{4})$,即可得出.

解答 解:( I)曲线C的普通方程为(x+1)2+(y-1)2=4,
由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ-2ρsinθ-2=0.
(II)联立θ=α和ρ2+2ρcosθ-2ρsinθ-2=0,
得ρ2+2ρ(cosα-sinα)-2=0,
设A(ρ1,α),B(ρ2,α),
则ρ12=2(cosα-sinα)=2$\sqrt{2}$$sin(α-\frac{π}{4})$,
由|OM|=$\frac{|{ρ}_{1}+{ρ}_{2}|}{2}$,得|OM|=$\sqrt{2}$$|sin(α-\frac{π}{4})|$$≤\sqrt{2}$,
当α=$\frac{3π}{4}$时,|OM|取最大值$\sqrt{2}$.

点评 本题考查了极坐标方程的应用、参数方程化为普通方程、直线与圆相交弦长问题、中点坐标公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{1(x=0)}\\{-x-1(x<0)}\end{array}\right.$
(1)求f{f[f(-1)]}的值;
(2)画出函数的图象;
(3)指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\sqrt{3}$cos2x+2sin($\frac{3π}{2}$+x)sin(π-x),x∈R
(1)求函数f(x)的单调递增区间
(2)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且f(A)=-$\sqrt{3}$,a=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人毎射击一次,击中目标得2分,未击中目标得0分,若甲、乙两名同学射击的命中率分别为$\frac{2}{5}$和p,且甲、乙两人各射击一次所得分数之和为2的概率为$\frac{9}{20}$,假设甲、乙两人射击互不影响.
(1)若乙射击两次,求其得分为2的概率;
(2)记甲、乙两人各射击一次所得分数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.连续掷两次骰子,以先后看到的点数m,n作为点P的坐标(m,n),那么点P在圆x2+y2=17内部(不包括边界)的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为倡导节约用电,某地采用了阶梯电价计费方法,具体为:每户每月用电量不超过a度的每度0.6元;每户每月用电量超过a度而不超过(a+120)度的,超出a度的部分每度0.65元;每户每月电量超过(a+120)度的,超出(a+120)度的部分每度0.80元.
(1)写出每户每月用电量x度与支付费y元的函数关系;
(2)调查了该地120户家庭去年的月平均用电量,结果如下表:
月平均用电量x(度)90140200260320
频数1030303020
这120户的月平均用电量的各频率视为该地每户月平均用电量的概率,若取a=1 80,用Y表示该地每户的月平均用电费用,求Y的分布列和数学期望(精确到元)
(3)今年用电形势严峻,该地政府决定适当下调a的值(170<a<180),小明家响应政府号召节约用电,预计他家今年的月平均电费为l15.2元,并且他家的月平均用电量X的分布列为:
月用电量X(度)160300180
p $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{3}$
请你求出今年调整的a值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\sqrt{3}cos(\frac{π}{2}+x)•cosx+{sin^2}x$,x∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若$B=\frac{π}{4}$,a=2且角A满足f(A)=0,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i为虚数单位,复数z满足z(1+i)=3-i,则z的实部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=|sinx|(x∈[-π,π]),g(x)为[-4,4]上的奇函数,且$g(x)=\left\{{\begin{array}{l}{-2x(0<x≤2)}\\{4x-12(2<x≤4)}\end{array}}\right.$,设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m、n、t,则m+n+t=(  )
A.9B.13C.17D.21

查看答案和解析>>

同步练习册答案