精英家教网 > 高中数学 > 题目详情

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,点E是棱AA1的中点,则异面直线DE与BC所成的角的余弦值是

【答案】
【解析】解:∵BC∥AD,
∴∠ADE是异面直线DE与BC所成的角,
∵棱长为2的正方体ABCD﹣A1B1C1D1中,
AD=2,AE=1,∴DE=
∴cos∠ADE= =
∴异面直线DE与BC所成的角的余弦值是
所以答案是:

【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等轴双曲线C的中心在原点,焦点在x轴上,双曲线C与抛物线y2=16x的准线交于A,B两点,|AB|=4 ,则双曲线C的实轴长为(
A.
B.2
C.4
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +lnx在(1,+∞)上是增函数,且a>0.
(1)求a的取值范围;
(2)求函数g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)设a>1,b>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长最长与最短的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是圆x2+y2=36的圆心,R是椭圆 上的一动点,且满足
(1)求动点Q的轨迹方程
(2)若直线y=x+1与曲线Q相交于A、B两点,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(用空间向量坐标表示解答)已知正三棱柱ABC﹣A1B1C1的各棱长都是4,E是BC的中点,F在CC1上,且CF=1.

(1)求证:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为 元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为 元(k为正常数).

(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意实数x,不等式mx2﹣(3﹣m)x+1>0成立或不等式mx>0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案